Exercise 2. Statistical Analysis of RNA-Seq Data

The DESeq2 developers provide a clearly written vignette how to use the software (https://www.bi
oconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html). Many of the
examples used in this exercise are from this manual. When it comes time to work with your own
data, we highly recommend that you first read this vignette.

Part 1. Basic Analysis: Identify differentially expressed (DE)
genes

1. Start R.

There are several different versions of R installed on BioHPC computers. The most recent installed
version is located in the directory /programs/R-4.0.0. If you create and navigate (cd) to the
directory /workdir/$USErR/exercise2 before you start R, this will be your working directory
within R. (Note that $USER is a system environment variable that holds your BioHPC userid). We'll also
start a screen session in case you lose your connection.

mkdir /workdir/$USER/exercise2
cd /workdir/$USER/exercise?
screen

/programs/R-4.0.0/bin/R

2. Load the matrix and sample files into R, and examine their contents.

In the exercise from the first week of this workshop, you created a read count matrix file named
gene_count. txt . This file contains read counts for 6 samples (wt1, wt2, wt3, mu1, mu2, mu3). If
you did not keep this file, you can use the gene_count. txt file located inside
/shared_data/RNAseq/exercise2/ . Also, there is tab-delimited text file samples.txt to describe
the 6 samples, which looks like this:

Sample Genotype
wt1 wt
wt2 wt
wt3 wt
mu mu
mu2 mu
mu3 mu

Two new R objects will be created: cts (from the gene_count.txt file)and coldata (from the

samples.txt file). Asthe gene_count.txt file does not have the sample names, we will run the
R command colnames(cts) <- rownames(coldata) to take the row names of coldata and use
them as the column names for the cts matrix.

af://n0
https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
af://n3
af://n4
af://n7

Note that Tines Tike this one (or # text snippets) that start with "#" are
comments

- you don't have to copy/paste them, but if you do they will be ignored
anyway

matrixFile <- "/shared_data/RNAseq/exercise2/gene_count.txt"

sampleFile <- "/shared_data/RNAseq/exercise2/samples.txt"

cts <- as.matrix(read.csv(matrixFile, sep="\t", row.names=1, header=FALSE))
coldata <- read.csv(sampleFile, sep="\t", row.names=1, header=TRUE)
head(coldata)

head(cts) # the columns have generic names (v1,v2,...)

assign the row names of coldata to the column names of cts
colnames(cts) <- rownames(coldata)
head(cts) # Tooks good now

3. Load the DESeq2 library. Create a DESeq2 object named dds from the
gene read count and sample information.

Tibrary(DESeq2)

dds <- DESegDataSetFromMatrix(countbData = cts, colbata = coldata, design = ~
Genotype)

dds # get some info on what's inside dds

show the corresponding Design Matrix that DESeq2 will use
model.matrix(~ Genotype, coldata)

(Intercept) Genotypewt
wtl 1 1
wt2 1 1
wt3 1 1
mul 1 0
mu2 1 0
mu3 1 0

4. Create a PCA plot from the DESeq2 object, using the default (500)
number of most variable genes

(Skip this step if you did it already in Exercise 1 last week.)

Tibrary(ggplot2)

vsd <- vst(dds, blind=FALSE)

pcabata <- plotPCA(vsd, intgroup=c("Genotype"), returnData=TRUE)
percentvar <- round(100 * attr(pcabata, "percentvar'))
ggplot(pcabata, aes(PCl, PC2, color=Genotype)) +
geom_point(size=3) +

x1im(-2.5, 2.5) +

ylim(-1, 1) +

xTab(paste0("PCl: ",percentvar[1l],"% variance")) +
ylab(paste0("PC2: ",percentvar[2],"% variance")) +
geom_text(aes(label=name),vjust=2)
ggsave("myplot.png™)

The message:
Saving 7 x 7 in image

af://n33
af://n35

indicates that the plot was sucessfully created

The vst(dds, blind=FALSE) part performs a variance stabilizing transformation of the
normalized counts, to prevent a handful genes with the highest expression levels and most
variance from dominating the PCA plot.

5. Create another PCA plot, this time using the 100 most variable genes
(ntop=100), instead of the default of 500.

Tibrary(ggplot2) # if you skipped step 4
vsd <- vst(dds, blind=FALSE) # if you skipped step 4

pcabatal00 <- plotPCA(vsd, intgroup=c("Genotype"), ntop=100, returnData=TRUE)
percentvar <- round(100 * attr(pcabatalOO, "percentvar™))

ggplot(pcabatalO0, aes(PCl, PC2, color=Genotype)) +

geom_point(size=3) +

x1im(-2.5, 2.5) +

ylim(-1, 1) +

xTab(paste0("PCl: ",percentvar[1l],"% variance")) +

ylab(paste0("PC2: ",percentvar[2],"% variance")) +
geom_text(aes(label=name),vjust=2)

ggsave("PCA_100.png™)

Use FileZilla to download the PCA_100.png file to your laptop, and double click the file to view the
plot. How does it compare to the plot with the top 500 genes, myplot.png?

6. Get a list of differentially expressed genes.

dds<-DESeq(dds) # the DESeq() function performs the analysis on the dds data
set

save the normalized counts to a tab-delimited text file
write.table(counts(dds,normalized=TRUE),file="Partl_normCounts.txt',sep="\t", row
.hames=TRUE, col.names=TRUE)

get the DE results

resultsNames(dds) # Tists the coefficients

res <- results(dds, name="Genotype_wt_vs_mu")

summary(res) # print the summary on screen, you should see the following:

out of 6435 with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) 1 1347, 21%
LFC < 0 (down) : 1020, 16%
outliers [1] : 0, 0%

Tow counts [2] 1 248, 3.9%

(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

another way to see the results (header and first 6 genes)
head(res)

log2 fold change (MLE): Genotype wt vs mu # *** what if you want mu vs wt???
wald test p-value: Genotype wt vs mu

af://n39
af://n42

DataFrame with 6 rows and 6 columns

baseMean Tog2FoldcChange 1fcsE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
YDL248w 11.327012 0.446508 0.450896 0.990269 0.32204274 0.4930657
YDL247w-A 0.000000 NA NA NA NA NA
YDL247wW 0.325112 -1.232607 2.682385 -0.459519 0.64586146 NA
YDL246C 0.253939 2.167765 3.242605 0.668526 0.50379810 NA
YDL245C 1.257693 4.388935 3.432627 1.278594 0.20104021 0.3530768
YDL244w 4.854093 -3.115036 1.124672 -2.769730 0.00561028 0.0199832

7. Switch the order of the levels so wildtype is the "control” or
"reference” level.

Note the the comparison is wild type (wt) vs mutant (mu), because DESeq2 (R, actually) decides
which level to use as the reference (control) level based their alphabetical order. We can force the
mutant vs wildtype comparison (i.e., make wildtype the control) by specifying the contrast, as
follows:

see the current ordering of the levels for the factor Genotype
dds$Genotype

[1] wt wt wt mu mu mu

Levels: mu wt

swap the Tevels, then confirm that it worked (wt will now be the reference
Tevel)

dds$Genotype <- factor(dds$Genotype, levels = c("wt","mu"))

dds$Genotype

[1] wt wt wt mu mu mu

Levels: wt mu

re-run the analyis with the re-ordered levels

dds<-DESeq(dds)

resultsNames(dds)

[1] "Intercept" "Genotype_mu_vs_wt" # *** Ah, that's better now!!!

res <- results(dds, name="Genotype_mu_vs_wt")
summary(res) # same as before but up and down are flipped

head(res)

now the signs of the Tog2FoldcChange are flipped:

log2 fold change (MLE): Genotype mu vs wt # *** Ah, that's better now!!!
wald test p-value: Genotype mu vs wt

DataFrame with 6 rows and 6 columns

baseMean Tog2FoldChange TfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
YDL248wW 11.327012 -0.446508 0.450896 -0.990269 0.32204274 0.4930657
YDL247w-A 0.000000 NA NA NA NA NA
YDL247wW 0.325112 1.232607 2.682385 0.459519 0.64586146 NA
YDL246C 0.253939 -2.167765 3.242605 -0.668526 0.50379810 NA
YDL245C 1.257693 -4.388935 3.432627 -1.278594 0.20104021 0.3530768
YDL244w 4.854093 3.115036 1.124672 2.769730 0.00561028 0.0199832

get information on what the columns contain:
mcols(res)$description

af://n44

[1] "mean of normalized counts for all samples"”

[2] "Tog2 fold change (MLE): Genotype mu vs wt"

[3] "standard error: Genotype mu vs wt"

[4] "wald statistic: Genotype mu vs wt"

[5] "wald test p-value: Genotype mu vs wt"

[6] "BH adjusted p-values" # *** accounting for multiple testing (=FDR)

Filter the results for FDR < 0.05 and

absolute value of Fold-Change > 2 (i.e., at least double or half the level of
expression)

res05 <- res[which(res$padj<0.05 & abs(res$log2Foldchange)>10g2(2)), 1

sort by padj and write to file
res050rdered <- resO5[order(res05$padj),]
write.csv(as.data.frame(res050rdered), file="wt_vs_mu_fdr05_fc2_results.csv'")

You can download the file "wt_vs_mu_fdr05_results.csv" with FileZilla and open it in Excel.
8. Shrinkage of log fold change of genes with very low expression.

Genes with very low expression usually have very noisy estimates of log2 fold changes. It is
desirable to shrink the fold change of genes with low read counts, but not shrink the fold change
of highly expressed genes too much. DEseq2 has implemented several different algorithms for
shrinkage. The DESeq?2 developers recommend to use apeglm method for shrinkage. Shrinkage
is especially important if you plan to use LFC to rank genes for enrichment analysis (e.g., GSEA, to
be covered next week).

Here you will compare the MA plot with or without shrinkage. The commands provided here write
the plots to pdf files, and you can download and view them on your laptop.

no shrinkage

res <- results(dds, name="Genotype_mu_vs_wt")
pdf("res_no_shrink.pdf")

plotMA(res, main = "No shrinkage", alpha=0.05, ylim=c(-4,4))
dev.off()

LFC estimates shrunken by apeglm method

res_shrink <- T1fcShrink(dds, coef="Genotype_mu_vs_wt", type="apeglm")
pdf("res_shrink.pdf")

plotMA(res_shrink, main = "Shrinkage by apegim", alpha=0.05, ylim=c(-4,4))
dev.off()

Part 2. Interactions

1. The data files.

In this experiment, there are 12 samples, with two variables: strains (wt vs mut), and sample
collection time (0 vs 120 minutes of osmotic stress). You will use two input files:
fission_gene_count.csv (count matrix) and fission_sample.csv (sample annotation). The sample
annotation file (fission_sample.csv) looks like this:

af://n48
af://n53
af://n54

strain minute

GSM1368273 wt 0
GSM1368274 wt 0
GSM1368275 wt 0
GSM1368285 wt 120
GSM1368286 wt 120
GSM1368287 wt 120
GSM1368291 mut 0
GSM1368292 mut 0
GSM1368293 mut 0
GSM1368303 mut 120
GSM1368304 mut 120
GSM1368305 mut 120
Reference:

Leong, S. H, Dawson, K., Wirth, C,, Li, Y., Connolly, Y., Smith, L. D, Wilkinson, R. C, Miller, J. C (2014).
“A global non-coding RNA system modulates fission yeast protein levels in response to stress.” Nat
Commun, 5, 3947. http://www.ncbi.nlm.nih.gov/pubmed/24853205.

2. Load data files into R.

As the values of one of the variables, "minute", are numeric, the minute variable needs to be
converted to a factor.

matrixFile <- "/shared_data/RNAseq/exercise2/fission_gene_count.csv"
sampleFile <- "/shared_data/RNAseq/exercise2/fission_sample.csv"

cts <- as.matrix(read.csv(matrixFile, row.names=1))

coldata <- read.csv(sampleFile, row.names=1)

convert the numeric variable "minute" into a factor
coldata$minute<-as.factor(coldata$minute)

3. Test of interactions of the strain and minute variable.

Tibrary(DESeq2) # not needed if this is already loaded
dds <- DESeqgDataSetFromMatrix(countData = cts,

colbata = coldata,

design = ~ strain + minute + strain:minute)

show the corresponding Design Matrix that DESeq2 will use
modeTl.matrix(~ strain + minute + strain:minute, coldata)

(Intercept) strainwt minutel20 strainwt:minutel20
GSM1368273 1 1 0 0
GSM1368274 1 1 0 0

http://www.ncbi.nlm.nih.gov/pubmed/24853205
af://n110
af://n113

GSM1368275
GSM1368285
GSM1368286
GSM1368287
GSM1368291
GSM1368292
GSM1368293
GSM1368303
GSM1368304
GSM1368305

R R R R RRRRRR
O OO0 OO0 O R R R R
H R R OOORHEREHRO
OO0 00O ORRERFE O

perform a Tikelihood ratio test, testing the significance of the

strain:minute interaction (by omitting that term from the reduced model)
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ strain + minute)

resLRT <- results(ddsLRT)

summary (resLRT)

no significant interactions were found:

out of 6703 with nonzero total read count

adjusted p-value < 0.1

LFC > 0 (up) : 0, 0%
LFC < 0 (down) : 0, 0%
outliers [1] 1, 0.015%
Tow counts [2] : 0, 0%

(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

see more info on the test performed and the results for the 6 most signif
genes:

options(width=150) # increase the width of the screen output
head(resLRT[order(resLRTS$pvalue),])

Tog2 fold change (MLE): strainwt.minutel20

LRT p-value: '~ strain + minute + strain:minute' vs '~ strain + minute'
DataFrame with 6 rows and 6 columns

baseMean Tog2FoldChange T1fcsE stat pvalue
padj

#it <numeric> <numeric> <numeric> <numeric> <numeric>
<numeric>

SPAC11D3.01c 313.13721 1.793633 0.463539 14.76077 0.000122048
0.817967

SPNCRNA.1621 9.30094 -3.095840 0.997907 10.26607 0.001354990
1.000000

SPCC1281.04 20.18763 2.487489 0.829423 9.29592 0.002296643
1.000000

SPAC5H10.09c 129.22395 0.664890 0.225595 8.70302 0.003176835
1.000000

SPBC336.16 7.65615 -3.029877 1.103006 7.79431 0.005241094
1.000000

SPRRNA.32 4780.82382 0.737386 0.269399 7.47301 0.006263084
1.000000

save the normalized counts to a tab-delimited text file

fissionNormCounts <- counts(ddsLRT,normalized=TRUE)
write.table(fissionNormCounts,file="'fission_normCounts.txt',sep="\t",row.names=T
RUE,col.names=TRUE)

Since no significant interactions were found (after correction for multiple testing), we can
conclude that gene expression in the two yeast strains (wild type and mutant) responds to 120
minutes of osmotic stress in a similar fashion, as far as we can tell given the statistical power of
this experiment. We were not able to detect any genes in the mutant that responded differently
than in the wild type. An interaction would have been detected, for example, if there was a gene
in that significantly increased its expression level in the mutant in response to stress, but did not
change much in the wild type. If such genes truly exist, we'll need more biological replicates (more
statistical power) to detect them. Indeed, Leong et al. (2014) concluded that "general osmotic
stress responses of fission yeast were not impaired by atf27 deletion."

However, one gene (SPAC11D3.01c) has a quite low p-value that, sadly, did not survive
correction for multiple testing -- it certainly seems worthy of further study! Let's check it out:

data<-plotCounts(ddsLRT,
gene="SPAC11D3.01c",

intgroup=c("strain","minute"),
returnbData=TRUE)
ggplot(data, mapping = aes(x=strain, y=count, color=minute,group=minute)) +
geom_point() +
scale_y_1ogl0(Q)
ggsave("SPAC11D3.01lc.png™)

Examining this plot (after downloading it with FileZilla) it seems that the expression level of the
gene SPAC11D3.01c responds much more dramatically to osmotic stress in the wild type than in
the mutant. This is an interaction! (But it still doesn't survive correction for multiple testing, as it has a
82% chance of being a false positive, according the the pad.)

Part 3. Batch effects

1. The data files.

In this experiment, there are 7 samples from two conditions (untreated and treated), and the data
are from two different batches (single- and paired-end sequencing). We will correct for the batch
effect in this analysis.

Reference for this data set: Brooks AN, Yang L, Duff MO, Hansen KD, Park JW, Dudoit S, Brenner
SE, Graveley BR (2011) Conservation of an RNA regulatory map between Drosophila and
mammals Genome Res. 21(2):193-202, Epub 2010 Oct 4, PMID: 20921232.

Here's what the sample annotation file (pasilla_sample_annotation.csv) looks like:

af://n119
af://n120

file condition type

treated1fb treated single-read
treated2fb treated paired-end
treated3fb treated paired-end
untreated1fb untreated single-read
untreated2fb untreated single-read
untreated3fb untreated paired-end
untreated4fb untreated paired-end

Run the following commands to load the data set into R. There are two files: the read count file
pasilla_gene_counts.tsv and the sample annotation file pasilla_sample_annotation.csv.

matrixFile <- "/programs/R-
3.5.0s/Tibrary/pasilla/extdata/pasilla_gene_counts.tsv"

sampleFile <- "/programs/R-
3.5.0s/Tibrary/pasilla/extdata/pasilla_sample_annotation.csv"

cts <- as.matrix(read.csv(matrixFile,sep="\t", row.names="gene_id"))
coldata <- read.csv(sampleFile, row.names=1)

coldata <- coldata[,c("condition","type")]

We need to remove the two extra characters ("fb") in sample names of the sample annotation file
(and convert the "-" in the type to "_" to remove some warning messages). We also need to fix
the order of samples in the read count matrix, to be consistent with sample annotation file (it's
crucial that the order matches!).

rownames (coldata) <- sub("fb", , rownames(coldata))

coldata$type <- sub(, "_", coldata$type)
coldata$type <- as.factor(coldata$type)

fix the order of the samples in the read count matrix
cts <- cts[, rownames(coldata)]

2. DE test accounting for the batch effect

We include the batch effect variable type in the model by using the design formula type +
condition. Then we retrieve the results for the factor condition, with batch effect type
corrected.

Tibrary(DESeq2) # if it is not already loaded

dds <- DESegDataSetFromMatrix(countData = cts,
colbata = coldata,
design = ~ type + condition)

dds <- DESeq(dds)

show the corresponding Design Matrix that DESeq2 will use
model.matrix(~ type + condition, coldata)

af://n161

(Intercept) typesingle_read conditionuntreated
treatedl 1 1
treated2

treated3

untreatedl
untreated?2
untreated3
untreated4

PR R R R R
OO Rr R OO
H R R RE OO o

save the normalized counts to a tab-delimited text file

pasillaNormCounts <- counts(dds,normalized=TRUE)
write.table(pasillaNormCounts,file="pasilla_normCounts.txt',sep="\t",row.names=T
RUE,col.names=TRUE)

resultsNames (dds)
[1] "Intercept" "type_single_read_vs_paired_end"
"condition_untreated_vs_treated"

force the comparison of treated vs untreated using "contrast"
res <- results(dds, contrast=c("condition","treated","untreated"))
summary(res)

head(res[order(res$pvalue),])

3. Plot PCA before and after removing batch effect.

Although the batch effect was accounted for in the above DE analysis, it will still be present in the
variance stabilized counts and visible in the PCA (and can be diagnosed from that) unless you
explicitly remove it with with Timma: : removeBatcheffect.

a. PCA plot before removing batch effect

Tibrary(ggplot2)
vsd <- vst(dds, blind=FALSE)
pcabata <- plotPCA(vsd, intgroup=c("condition", "type"), returnData=TRUE)

percentvar <- round(100 * attr(pcabata, "percentvar'))
ggplot(pcabata, aes(PCl, PC2, color=condition, shape = type)) +
geom_point(size=3) +

xTim(-12, 12) +

ylim(-10, 10) +

xlab(paste0("PCl: ",percentvar[l],"% variance")) +
ylab(paste0("PC2: ",percentvar[2],"% variance")) +
geom_text(aes(label=name),vjust=2)

ggsave ("myPCAwithBatcheffect.png")

b. PCA plot after removing the batch effect with Timma: : removeBatcheffect . This is a good
idea if you plan to use the variance stabilized counts (vsd) in downstream analysis such as
WGCNA (covered next week).

assay(vsd) <- Tlimma::removeBatchEffect(assay(vsd), vsd$type)

pcabata <- plotPCA(vsd, intgroup=c("condition", "type"), returnData=TRUE)
percentvar <- round(100 * attr(pcabata, "percentvar'))

ggplot(pcabata, aes(PCl, PC2, color=condition, shape = type)) +
geom_point(size=3) +

xTim(-12, 12) +

ylim(-10, 10) +

af://n164

xTab(paste0("PCl: ",percentvar[1l],"% variance")) +
ylab(paste0("PC2: ",percentvar[2],"% variance")) +
geom_text(aes(label=name),vjust=2)
ggsave("myPCABatchEffectRemoved.png")

save the batch effect-corrected, variance stabilized counts to a tab-delimited
text file
write.table(assay(vsd),file="pasilla_batchCorrectedvsD.txt',sep="\t", row.names=T
RUE,col.names=TRUE)

4. Heatmap of the distances between the samples

Examining the distances between samples is an additional method, along with PCA, for identifying
outlier samples.

Tibrary("pheatmap")

Tibrary("RColorBrewer")

sampleDists <- dist(t(assay(vsd)))

sampleDistMatrix <- as.matrix(sampleDists)

rownames (sampleDistMatrix) <- paste(vsd$condition, vsd$type, sep="-")

colnames(sampleDistMatrix) <- NULL

colors <- colorRampPalette(rev(brewer.pal(9, "Blues")))(255)

pdf("heatmapSampleDists.pdf", height = 6, width = 9)

pheatmap(sampleDistMatrix,
clustering_distance_rows=sampleDists,
clustering_distance_cols=sampleDists,
col=colors)

dev.off(Q)

5. Heatmap of batch-corrected variance stabilized counts for the 20 most
siginificant genes

This provides a visual diplay of the differential expression of the most significant genes. Plotting
the deviation from the mean variance stabilized count (after batch correction) makes the
contrasts more clear.

get the gene names for the top 20
top20 <- res[order(res$pvalue),]
top20 <- rownames(top20[1:20,])

get a data frame containing the plot annotation data
df <- as.data.frame(colbata(dds)[,c("condition","type")])

mat <- assay(vsd)[top20,] # get the vsd for the top 20 genes

mat <- mat - rowMeans(mat) # plot the deviation from the mean var stab count
pdf ("heatmapvsDCounts.pdf", height = 8, width = 10)
pheatmap(mat,annotation_col=df)

dev.off()

Exit R
When you are done, exit R as follows

qO
Save workspace image? [y/n/c]: <--- Type "n" for no.

af://n170
af://n173
af://n176

	Exercise 2. Statistical Analysis of RNA-Seq Data
	Part 1. Basic Analysis: Identify differentially expressed (DE) genes
	1. Start R.
	2. Load the matrix and sample files into R, and examine their contents.
	3. Load the DESeq2 library. Create a DESeq2 object named dds from the gene read count and sample information.
	4. Create a PCA plot from the DESeq2 object, using the default (500) number of most variable genes
	5. Create another PCA plot, this time using the 100 most variable genes (ntop=100), instead of the default of 500.
	6. Get a list of differentially expressed genes.
	7. Switch the order of the levels so wildtype is the "control" or "reference" level.
	8. Shrinkage of log fold change of genes with very low expression.

	Part 2. Interactions
	1. The data files.
	2. Load data files into R.
	3. Test of interactions of the strain and minute variable.

	Part 3. Batch effects
	1. The data files.
	2. DE test accounting for the batch effect
	3. Plot PCA before and after removing batch effect.
	4. Heatmap of the distances between the samples
	5. Heatmap of batch-corrected variance stabilized counts for the 20 most siginificant genes

	Exit R

