
Practical Linux Examples

• Processing large text file

• Parallelization of independent tasks

Qi Sun & Robert Bukowski
Bioinformatics Facility

Cornell University

http://cbsu.tc.cornell.edu/lab/doc/linux_examples_slides.pdf
http://cbsu.tc.cornell.edu/lab/doc/linux_examples_exercises.pdf

http://cbsu.tc.cornell.edu/lab/doc/linux_examples_slides.pdf
http://cbsu.tc.cornell.edu/lab/doc/linux_examples_slides.pdf

Estimate the percentage of
sequencing reads in the FASTQ
file that contains the adapter
“AGATCGGAAGAGC”.

• Read file:
cat D7RACXX.fastq

• Select lines that contain the string
“AGATCGGAAGAGC”

grep AGATCGGAAGAGC

• Count the selected lines
wc -l

Estimate the percentage of
sequencing reads in the FASTQ
file that contains the adapter
“AGATCGGAAGAGC”.

cat D7RACXX.fastq grep AGATCGGAAGAGC wc -l | |

Estimate the percentage of
sequencing reads in the FASTQ
file that contains the adapter
“AGATCGGAAGAGC”.

cat DeD7RACXX.fastq grep AGATCGGAAGAGC wc -l | ||head -n 40000

To get a quick answer, you can estimate the
percentage based on the first 40,000 lines

Estimate the percentage of
sequencing reads in the FASTQ
file that contains the adapter
“AGATCGGAAGAGC”.

>

cat D7RACXX.fastq | \

head –n 40000 | \

grep AGATCGGAAGAGC | \

wc -l

Use “\” to separate the command
into multiple lines

program
STDIN STDOUT

STDERR

Three streams for a standard Linux program

program 1Input file
cat
inputfile program 2 program n… > Output

File

One liner
Write to file

The first program in the chain
would read from a file.

"cat" is often used as the first
program.

program
STDIN STDOUT

STDERR

Three streams for a standard Linux program

program 1Input file
gunzip -c
inputfile program 2 program n… > Output

File

One liner

If the input file is a “.gz” file,

use “gunzip -c” to read file.

Search for a pattern and output
matched linesgrep

AAGATCAAAAAAGA

ATTTACGAAAAAAGA

ACCTGTTGGATCCAAAGTT

AAACTTTCGACGATCT

ATTTTTTTAGAAAGG

AAGATCAAAAAAGA

AAACTTTCGACGATCT

$ cat mydata.txt $ cat mydata.txt | grep '[AC]GATC'

Count the number of lineswc -l

AAGATCAAAAAAGA

ATTTACGAAAAAAGA

ACCTGTTGGATCCAAAGTT

AAACTTTCGACGATCT

ATTTTTTTAGAAAGG

2

$ cat mydata.txt $ cat mydata.txt | grep '[AC]GATC' | wc -l

Sort the text in a filesort
$ sort myChr.txt

Chr1
Chr10
Chr2
Chr3
Chr4
Chr5

$ sort -V myChr.txt

Chr1
Chr2
Chr3
Chr4
Chr5
Chr10

$ sort -n myPos.txt

1
2
3
4
5
10

Sort the text by multiple columnssort
$ sort -k1,1V -k2,2n myChrPos.txt

Chr1 12
Chr1 100
Chr1 200
Chr2 34
Chr2 121
Chr2 300

Locale and sorting
Computer English

LC_ALL=US_en
US English *

LC_ALL=C

Alphabetic order
A
B
C
…

X
Y
Z
a
b
c
…
x
y
z

Alphabetic order
a
A
b
B
c
C
…
x
X
y
Y
z
Z

Use this Linux command to
find out the locale setting
on your server:

locale

* On Linux, US English locale sorting
also ignore the non-alphanumerical
characters. This could cause problems.

LC_ALL=C sort -S 4G -k1,1 myChr.txt

Some extra parameter to set for the “sort” command

LC_ALL=C vs LC_ALL=US_en

aa
a.a
AA
bb
BB

AA
BB
a.a
aa
bb

Use RAM as buffer 4G

-S 4G

* BioHPC default locale is C. So you can skip this
parameter

Count the occurrence of unique tagsuniq -c

ItemB
ItemA
ItemB
ItemC
ItemB
ItemC
ItemB
ItemC

1 ItemA

4 ItemB

3 ItemC

$ cat mydata.txt $ cat mydata.txt | sort | uniq -c

Mark sure to run
“sort” before “uniq”

cat File1 File2 > mergedfile1

File 1:

Item1

Item2

File2:

Item3

Item4

paste File1 File2 > mergedfile2

Item1
Item2
Item3
Item4

Item1 Item3
Item2 Item4

cat f1 f2 paste f1 f2vs

Merging files:

* Make sure that that two files has same number of
rows and sorted the same way. Otherwise, use “join”

vs join f1 f2

File 1:
Gene1 DNA-binding

Gene2 kinase

Gene3 membrane

File2:
Gene2 764

Gene3 23

Gene4 34

Merging two files that share a common
fieldjoin

join -1 1 -2 1 File1 File2 > mergedfile

Gene2 Kinase 764
Gene3 membrane 23

join -1 1 -2 1 -a1 File1 File2 > mergedfile
Gene1 DNA-binding
Gene2 Kinase 764
Gene3 membrane 23

Output selected columns in a tablecut

Chr1 1000 2250 Gene1

Chr1 3010 5340 Gene2

Chr1 7500 8460 Gene3

Chr2 8933 9500 Gene4

Chr1 Gene1

Chr1 Gene2

Chr1 Gene3

Chr2 Gene4

$ cat mydata.txt $ cat mydata.txt | cut -f 1,4

Modify text in a filesed

Chr1 1000 2250 Gene1

Chr1 3010 5340 Gene2

Chr1 7500 8460 Gene3

Chr2 8933 9500 Gene4

1 1000 2250 Gene1

1 3010 5340 Gene2

1 7500 8460 Gene3

2 8933 9500 Gene4

$ cat mydata.txt $ cat mydata.txt | sed "s/^Chr//"

Chr1 1000 2250 Gene1

Chr1 3010 5340 Gene2

Chr1 7500 8460 Gene3

Chr2 8933 9500 Gene4

Gene1

Gene2

Gene3

$ cat mydata.txt
$ cat mydata.txt |\
awk '{if ($1=="Chr1") print $4}'

Probably the most versatile function
in Linuxawk

>

cat D7RACXX.fastq | \

head –n 40000 | \

grep AGATCGGAAGAGC | \

wc -l

A Good Practice:
Create a shell script file for the one liner

>

Run the shell script

sh checkadapter.sh

>

gunzip -c human.gff3.gz | \

awk 'BEGIN {OFS = "\t"}; {if ($3=="gene") print $1,$4-1,$5}' | \

bedtools coverage -a win1mb.bed -b stdin -counts | \

LC_ALL=C sort -k1,1V -k2,2n > gene.cover.bed

Debug a one-liner

gunzip -c human.gff3.gz | head -n 1000 > tmpfile

cat tmpfile| \

awk 'BEGIN {OFS = "\t"}; {if ($3=="gene") print $1,$4-1,$5}' | head -n 100

Many bioinformatics software support STDIN instead of
input file
Run “BWA” without pipe:
bwa mem ref.fa reads.fq > tmp.sam
samtools view -b tmp.sam > out.bam

With pipe:
bwa mem ref.fa reads.fq | samtools view -bS - > out.bam

Use "-" to specify input
from STDIN instead of a file

Create a temporary SAM
file

Using pipe with bed tools:

…… | bedtools coverage -a FirstFile -b stdin

The bedtools takes in two input files, you need to specify
which file from stdin

bedtools makewindows -g genome.txt -w 1000 -s 1000 > win1000.bed

bedtools coverage -abam Sample.bam -b win1000.bed -counts> coverage.bed

Chr1
1000 2000 3000

Using BEDtools to process genomics data files

4000

An example: Count the number of reads in each 1kb sliding window of
the genome

A tab-delimited text file:
Chr1 21234023
Chr2 19282343
Chr3 15845499

All BioHPC Lab machines feature multiple CPU cores

 general (cbsum1c*b*): 8 CPU cores
 medium-memory (cbsumm*): 24 CPU cores
 marge-memory (cbsulm*): 64+ CPU cores

Using multi-processor machines

/programs/bin/perlscripts/perl_fork_univ.pl

Three ways to utilize multiple CPU cores on a machine:

 Using a given program’s built-in parallelization, e.g.:

blast+ -num_threads 8 [other options]

bowtie –p 8 [other options]

 Simultaneously executing several programs in the background, e.g.:

gzip file1 &
gzip file2 &
gzip file3 &

 If the number of independent tasks is larger than the number of CPU cores -
use a “driver” program:

Using multi-processor machines

Multiple
independent tasks

Typically, all CPUs
work together on a
single task. Non-
trivial, but taken care
of by the
programmers.

/programs/bin/perlscripts/perl_fork_univ.pl

CPU: number of cores

RAM: not exceed the memory

DISK: over load the DISK IO

Using perl_fork_univ.pl

/programs/bin/perlscripts/perl_fork_univ.pl TaskFile NP >& log &

Prepare a file (called, for example, TaskFile) listing all commands to be executed. For example,

where NP is the number of processors to use (e.g., 10). The file “log” will contain some useful timing information.

…..number of lines (i.e., tasks)
may be very large

Then run the following command:

 perl_fork_univ.pl is an CBSU in-house “driver” script (written in perl)

 It will execute tasks listed in TaskFile using up to NP processors
 The first NP tasks will be launched simultaneously
 The (NP+1)th task will be launched right after one of the initial ones completes and

a “slot” becomes available
 The (NP+2)nd task will be launched right after another slot becomes available
 …… etc., until all tasks are distributed

 Only up to NP tasks are running at a time (less at the end)

 All NP processors always kept busy (except near the end of task list) – Load Balancing

Using perl_fork_univ.pl

What does the script perl_fork_univ.pl do?

Using perl_fork_univ.pl
Ho to efficiently create a long list of tasks? Can use “loop” syntax built into bash:

…..

TaskFile

Create an run a script like this, or just type directly
from command line, ending each line with RETURN

Typically, determining the right number of CPUs to run on requires some experimentation.

Factors to consider

• total number of CPU cores on a machine: NP <= (number of CPU cores on the machine)

• combined memory required by all tasks running simultaneously should not exceed about 90% of total
memory available on a machine; use top to monitor memory usage

• disk I/O bandwidth: tasks reading/write to the same disk compete for disk bandwidth. Running too
many simultaneously will slow things down

• other jobs running on a machine: they also take CPU cores and memory!

How to choose number of CPU cores

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31

