# SINGLE CELL RNA-sec **WORKSHOP**

## **TREX x BioHPC**

Week 2 Faraz Ahmed - 02/19/24





DOI: 10.1002/ctm2.694

REVIEW

#### Single-cell RNA sequencing technologies and applications: A brief overview

Dragomirka Jovic<sup>1,2</sup> Lin Lin<sup>5,6</sup> Xue Liang<sup>1,2,3</sup> Hua Zeng<sup>4</sup> **Fengping Xu<sup>1,2</sup>** Yonglun Luo<sup>1,2,5,6</sup>





#### Cellranger 10x Suite



| CLINICAL AND TRANSLATIONAL MEDICINE<br>Open Access | WILE |
|----------------------------------------------------|------|

DOI: 10.1002/ctm2.694

REVIEW

Single-cell RNA sequencing technologies and applications: A brief overview

Dragomirka Jovic<sup>1,2</sup> | Xue Liang<sup>1,2,3</sup> | Hua Zeng<sup>4</sup> | Lin Lin<sup>5,6</sup> | Fengping Xu<sup>1,2</sup> | Yonglun Luo<sup>1,2,5,6</sup>





| DOI: 10.1002/ctm2.694 | CLINICAL AND TRANSLATIONAL MEDICINE |       |
|-----------------------|-------------------------------------|-------|
| REVIEW                | OpenAtors                           | WILEY |

Single-cell RNA sequencing technologies and applications: A brief overview

Dragomirka Jovic<sup>1,2</sup> | Xue Liang<sup>1,2,3</sup> | Hua Zeng<sup>4</sup> | Lin Lin<sup>5,6</sup> | Fengping Xu<sup>1,2</sup> | Yonglun Luo<sup>1,2,5,6</sup> Seurat Scanpy Bioconductor/OSCA



DOI: 10.1002/ctm2.694

REVIEW

#### Single-cell RNA sequencing technologies and applications: A brief overview

Dragomirka Jovic<sup>1,2</sup> | Xue Liang<sup>1,2,3</sup> | Hua Zeng<sup>4</sup> | Lin Lin<sup>5,6</sup> | Fengping Xu<sup>1,2</sup> | Yonglun Luo<sup>1,2,5,6</sup>





**Doublet Filtering Ambient RNA Removal CellCycle Regression Normalization Method** Integration



**Goals:** 

- Filter Data to only include cells of high quality

**Challenges:** 

- Delineating cells from poor quality from less complex cells
- Choosing appropriate thresholds

**Recommendations:** 

- Have a good idea of your expectations:
  - Do we expect low complexity cells? Same cell types? PBMCS?
  - Do we expect cells to have high MT reads?











nCount\_RNA: Number of UMI's detected Per Cell

nFeature\_RNA: Number of features/genes detected per cell

percent.MT: Proportion of Mitochondiral Reads Per cell





#### log10GenesPerUMI



#### log10GenesPerUMI

- Also referred to as Novelty Score

- Provides insights for RNA complexity Per Cell

log10(nFeature\_RNA) / log10(nCount\_RNA)





**Goals:** 

- Normalize UMI counts to account for differences in sequencing depth and overdispersed count values

**Challenges:** 

**Recommendations:** 

appropriate)



#### - Removing unwanted variation so we do not drive downstream clustering by artifacts

#### - Regress out number of UMIs, mitochondrial contamination, cell cycle (if needed and



Various methods have been developed specifically for scRNA-seq normalization

In Seurat we can either use LogNormalize method or SCTransform method

In general, normalization is a two Step Process

- Scaling
- Simple Transformation OR Complex Transformation



LogNormalize:

Transformation -> Log Transformation (same for each gene, hence simple transformation)

**SCTransform:** 

Scaling —> Multiplies each measurement by a gene-specific weight

**Transformation** —> Pearson Residuals from regularized negative binomial regression

More evidence == more weight; Genes that are expressed in only a small fraction of cells will be favored (useful for finding rare cell populations)

#### Scaling —> (Divide Counts for each Gene / Total Counts in a Given Cell) \* scale.factor (default: 10,000)

Method Open access Published: 23 December 2019

#### Normalization and variance stabilization of single-cell **RNA-seq data using regularized negative binomial** regression

Christoph Hafemeister 🗠 & Rahul Satija

Genome Biology 20, Article number: 296 (2019) Cite this article

137k Accesses | 1364 Citations | 107 Altmetric | Metrics



Method Open access Published: 23 December 2019

#### Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression

Christoph Hafemeister 🗠 & Rahul Satija 🗠

<u>Genome Biology</u> 20, Article number: 296 (2019) Cite this article

137k Accesses | 1364 Citations | 107 Altmetric | Metrics







Normalization and variance stak **RNA-seq data using regularized** regression

#### **Takeaway:**

Cells with low total UMI counts show disproportionately high variances' – post LogNormalization









## **High Variable Gene Selection**

Goals:

These genes will be used for Clustering

- Find Most Interesting Features in an Unsupervised Manner
- Optimize Signal:Noise ratio

**Challenges:** 

- distinguish true variability from technical noise or dropout events
- The heterogeneity and complexity of the cell populations

**Recommendations:** 

Validate HVG lists ....



## - The high sparsity and zero-inflation of the scRNA-seq data makes it difficult to



### **HVG Selection \***

In Seurat, there are a few ways to find High Variable Genes

- 1. VST (Variance Stabilized Transformation) Method (Default)
- 2. MVP (Mean Variance Plot) Method
- **3. Dispersion Method**

#### \* https://satijalab.org/seurat/reference/findvariablefeatures





## **HVG Selection \***

#### **VST Method (Default):**

First, it fits a line to the relationship of log(variance) and log(mean) using local polynomial regression (loess). This line represents the expected variance for a given mean expression level.

Then, it standardizes the feature values using the observed mean and expected variance (given by the fitted line). This removes the effect of the mean expression on the variance, and makes the features more comparable.

Next, it calculates the variance of the standardized values, after clipping them to a maximum value. This value is set to the square root of the number of cells by default, but can be changed by the user. Clipping helps to reduce the influence of outliers or extreme values on the variance calculation.

Finally, it selects the features with the highest variance among the standardized values, as these are the most variable features across cells.





#### These genes essentially drive the Clustering Analysis





#### Cell Type Dimension Clustering → $\rightarrow$ → Reduction Annotation 30 -20 PO 10 SNE\_2 -20 -10 0 PC\_1 10 -20 ó tSNE\_1 20 40 20 40 -20 0 tSNE\_1



## **Dimension Reduction (PCA)**

**Goals:** 

- Use HVG's to perform dimensionality reduction

**Challenges:** 

- Can be affected by batch effects + other unwanted sources of variation
- Separating technical variation from true biological variation

**Recommendations:** 

**Batch Correction / Integration** 





### **Dimension Reduction (PCA)**











**Goals:** 

- Generate cell type-specific clusters
- cells with high mitochondrial content.

**Challenges:** 

- Iterative Process, revise QC thresholds

**Recommendations:** 

- Expectations?
- Try different resolutions



Determine whether clusters represent true cell types or cluster due to biological or technical variation, such as clusters of cells in the S phase of the cell cycle, clusters of specific batches, or

- Identifying poor quality clusters that may be due to uninteresting biological or technical variation



There are three main approaches:

- **1. Hierarchical Clustering:** These methods build a tree-like structure of clusters, where each node represents a cluster and the distance between nodes reflects the similarity between clusters
- **2. K-means Clustering:** These methods partition the cells into a predefined number of clusters, such that the within-cluster variation is minimized and the between-cluster variation is maximized
- **3. Graph-Based Clustering:** These methods construct a graph where each node represents a cell and each edge represents the similarity or distance between two cells. Then, they apply graph partitioning algorithms to find clusters of densely connected nodes.

https://biocellgen-public.svi.edu.au/mig 2019 scrnaseq-workshop/clustering-and-cell-annotation.html





#### **Seurat uses Graph-Based Clustering:**

The default clustering algorithm in Seurat is the *Louvain* algorithm which is a fast and scalable method for finding communities in large networks.

https://biocellgen-public.svi.edu.au/mig\_2019\_scrnaseq-workshop/clustering-and-cell-annotation.html





#### First Step is to construct a KNN graph (Uses Euclidean Distances in PCA space)

#### Second Step is to apply the Louvain Algorithm to find communities



https://biocellgen-public.svi.edu.au/mig\_2019\_scrnaseq-workshop/clustering-and-cell-annotation.html











### **Resolution = 0.8**



- 13







**Goals:** 

- Determine gene markers for each cluster
- Identify cell type of each cluster using markers

**Challenges:** 

Highly dependent on the quality of clusters 

**Recommendations:** 

- Top Markers are trustworthy (inflated p-values, each cell is a replicate)
- Identify Conserved Markers between conditions for each cluster
- Identify markers that are differentially expressed between specific clusters















### https://github.com/satijalab/seurat/wiki

#### Home

Paul Hoffman edited this page on Aug 27, 2018 · 13 revisions

#### Seurat Developer's Guide

Seurat is a toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. This guide is to help developers understand how the Seurat object is structured, how to interact with the object and access data from it, and how to develop new methods for Seurat objects.

Seurat 3.0 is currently under development, and many improvements are aimed towards helping users to rapidly explore and analyze different types of data from the same set of cells. These data types may stem from inherently multimodal data, imputed or batch/corrected measurements, and even spatial data.

#### **Object Overview**

The Seurat object is a class allowing for the storage and manipulation of single-cell data. Previous version of the Seurat object were designed primarily with scRNA-seq data in mind. However, with the development of new technologies allowing for multiple modes of data to be collected from the same set of cells, we have redesigned the Seurat 3.0 object to allow for greater flexibility to work with all these data types in a cohesive framework.

At the top level, the Seurat object serves as a collection of Assay and DimReduc objects, representing expression data and dimensionality reductions of the expression data, respectively. The Assay objects are designed to hold expression data of a single type, such as RNA-seq gene expression, CITE-seq ADTs, cell hashtags, or imputed gene values. DimReduc objects represent transformations of the data contained within the Assay object(s) via various dimensional reduction techniques such as PCA. For class-specific details, including more in depth description of the slots, please see the wiki sections for each class.









### Seurat Object is a representation of single-cell expression data for R

### Collection of Expression Data (Assay) + Dimensionality Reductions (DimReduc)

| Slots                   |                                                                                 |
|-------------------------|---------------------------------------------------------------------------------|
| Slot                    | Function                                                                        |
| assays                  | A list of assays within this object                                             |
| meta.data               | Cell-level meta data                                                            |
| active.assay            | Name of active, or default, assay                                               |
| active.ident            | Identity classes for the current object                                         |
| graphs                  | A list of nearest neighbor graphs                                               |
| reductions              | A list of DimReduc objects                                                      |
| <pre>project.name</pre> | User-defined project name (optional)                                            |
| tools                   | Empty list. Tool developers can store any internal data from their methods here |
| misc                    | Empty slot. User can store additional information here                          |
| version                 | Seurat version used when creating the object                                    |







### https://github.com/satijalab/seurat/wiki

Assay's **Complex scRNA-seq experiments = Multiples Assay's scRNA** Slots **CITE** seq **Spatial** 

| Slot          |      |
|---------------|------|
| counts        | Stor |
| data          | Nor  |
| scale.data    | Sca  |
| key           | A cł |
| var.features  | A ve |
| meta.features | Feat |



For a typical scRNA-seq experiments, a Seurat object will have a single Assay ("RNA").

| Function                                                               |
|------------------------------------------------------------------------|
| es unnormalized data such as raw counts or TPMs                        |
| nalized data matrix                                                    |
| ed data matrix                                                         |
| aracter string to facilitate looking up features from a specific Assay |
| ctor of features identified as variable                                |
| ure-level meta data                                                    |
|                                                                        |







### https://github.com/satijalab/seurat/wiki

#### DimReduc object represents a dimensional reduction taken upon the Seurat object.

| Slots                      |                                                                               |
|----------------------------|-------------------------------------------------------------------------------|
| Slot                       | Function                                                                      |
| cell.embeddings            | A matrix with cell embeddings                                                 |
| feature.loadings           | A matrix with feature loadings                                                |
| feature.loadings.projected | A matrix with projected feature loadings                                      |
| assay.used                 | Assay used to calculate this dimensional reduction                            |
| stdev                      | Standard deviation for the dimensional reduction                              |
| key                        | A character string to facilitate looking up features from a specific DimReduc |
| jackstraw                  | Results from the JackStraw function                                           |
| misc                       | •••                                                                           |





37

#### https://satijalab.org/seurat/articles/essential\_commands

## Contents

Standard Seurat workflow

Seurat Object Data Access

Subsetting and merging

Pseudobulk analysis

Visualization in Seurat

**Multi-Assay Features** 

Additional resources









### Creation of Seurat Object:

Seurat has a handful of functions that can directly import cellranger outputs Read10X h5() + CreateSeuratObject()

#### Read 10X hdf5 file

#### Description

Read count matrix from 10X CellRanger hdf5 file. This can be used to read both scATAC-seq and scRNA-seq matrices.

#### Usage

Read10X\_h5(filename, use.names = TRUE, unique.features = TRUE)

#### Arguments

| filename        | Path to h5 file                                            |
|-----------------|------------------------------------------------------------|
| use.names       | Label row names with feature names rather than ID numbers. |
| unique.features | Make feature names unique (default TRUE)                   |

#### Value

Returns a sparse matrix with rows and columns labeled. If multiple genomes are present, returns a list of sparse matrices (one per genome).

[Package Seurat version 5.0.1 Index]

| Create a Seurat object                     |
|--------------------------------------------|
| Description                                |
| Create a Seurat object from raw data       |
| Usage                                      |
| CreateSeuratObject(                        |
| counts,                                    |
| assay = "RNA",                             |
| names.field = $1$ ,                        |
| <pre>names.delim = "_",</pre>              |
| meta.data = NULL,                          |
| <pre>project = "CreateSeuratObject",</pre> |
| •••                                        |
| )                                          |





## **Creation of Seurat Object:**

In a *multisample* experiment:

- Create a seurat object for each sample
- Merge all seurat objects together using the merge function



sobj <- merge(x = sobj.list[[1]], y = sobj.list[2:length(sobj.list)], merge.data=TRUE)</pre>



nCount\_RNA

nFeature\_RNA

log10GenesPerUMI



![](_page_41_Figure_5.jpeg)

#### percent.MT

Merged Seurat Object

![](_page_41_Picture_8.jpeg)

![](_page_41_Picture_9.jpeg)

![](_page_41_Picture_10.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

### **HVG Selection**

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

Number of top variable features selected

### **Dimension Reduction**

![](_page_44_Figure_1.jpeg)

ElbowPlot(sobj.filtered, ndims = 50, reduction = "pca")

![](_page_44_Figure_4.jpeg)

![](_page_44_Figure_5.jpeg)

Number of PC's to compute

![](_page_45_Figure_0.jpeg)

![](_page_45_Figure_1.jpeg)

```
PCA Dimensions
```

Sets the granularity