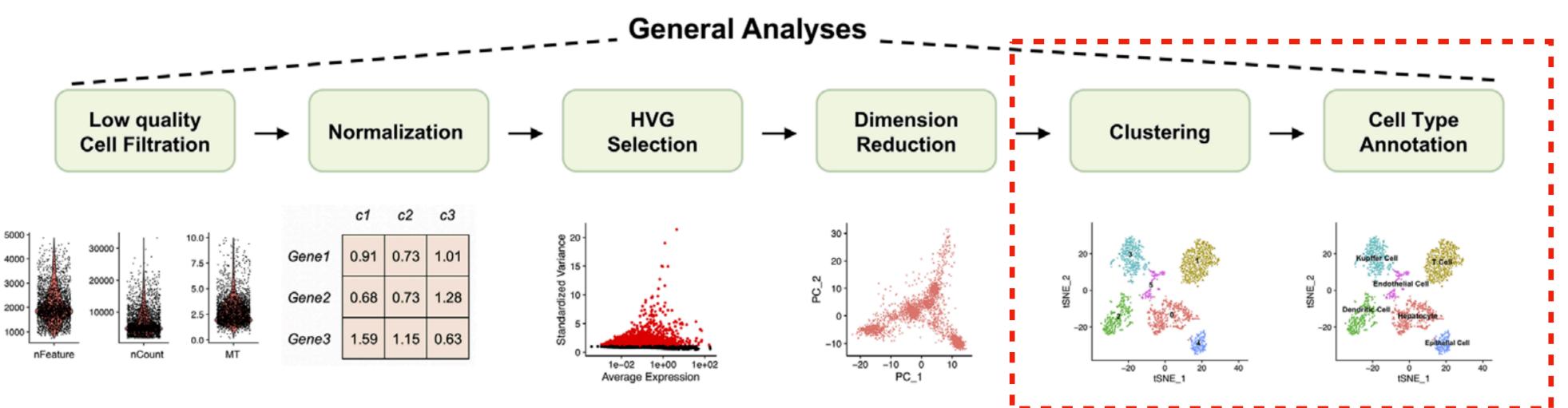
SINGLE CELL RNA-sec WORKSHOP

TREX x BioHPC

Week 3 **Faraz Ahmed - 02/26/24**

Analysis Overview:



Scoring Methods + Reference Based Alignment

Doublet Filtering Ambient RNA Removal CellCycle Regression Integration

Comprehensive Quality Control Analysis

1. Removing Unwanted Technical or Biological Variation

Clustering

Ideal Cluster's:

Cell Type Specific Clusters;

Roughly Good representation of all samples in each cluster;

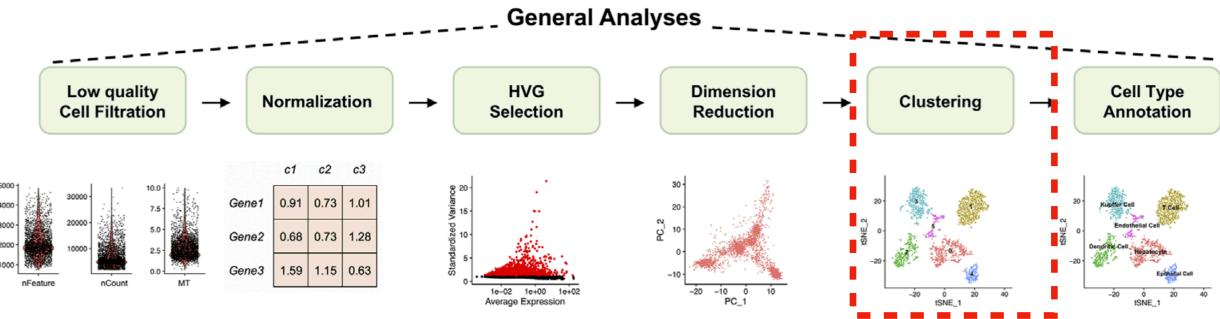
Free of Technical Artifacts/Unwanted Variation;

Unwanted Technical Variation:

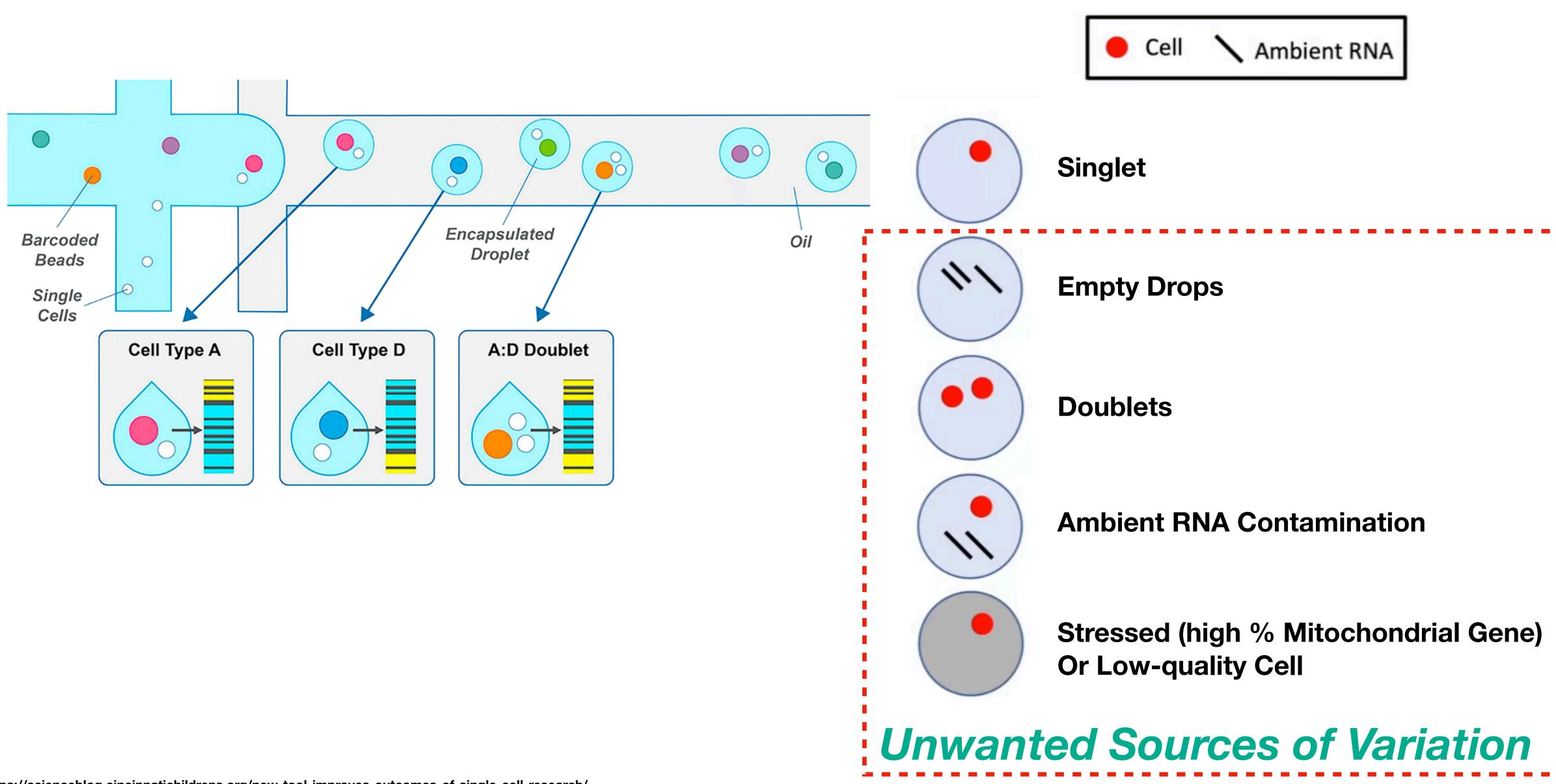
Batch Ambient RNA Doublets Library Protocol

Unwanted Biological Variation:

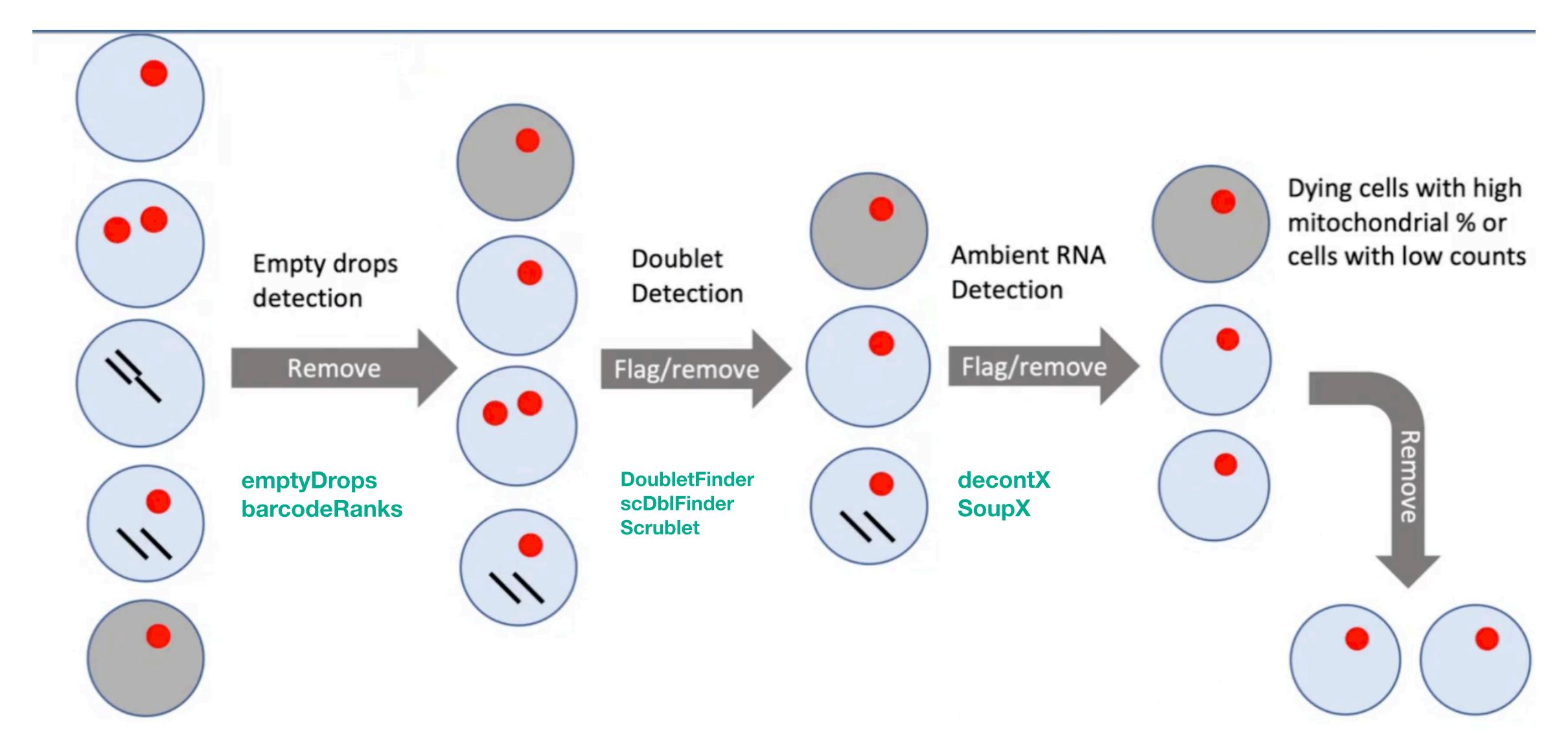
CellCycle **Proportion of MT reads** Sample/Patient Sex or Age etc.



10x Chromium Overview:



Strategy For Technical Contamination Filtering



Strategy For Technical Contamination Filtering

Yang et al. Genome Biology (2020) 21:57 https://doi.org/10.1186/s13059-020-1950-6

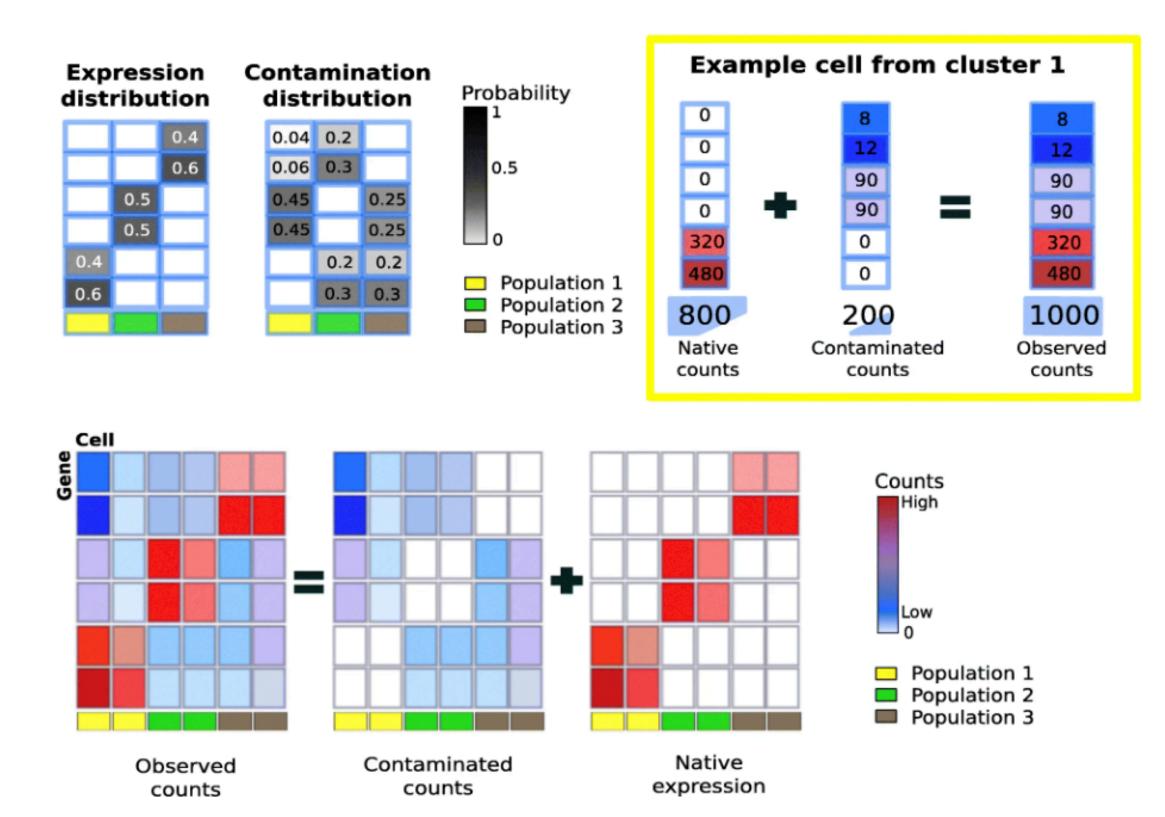
Genome Biology

METHOD

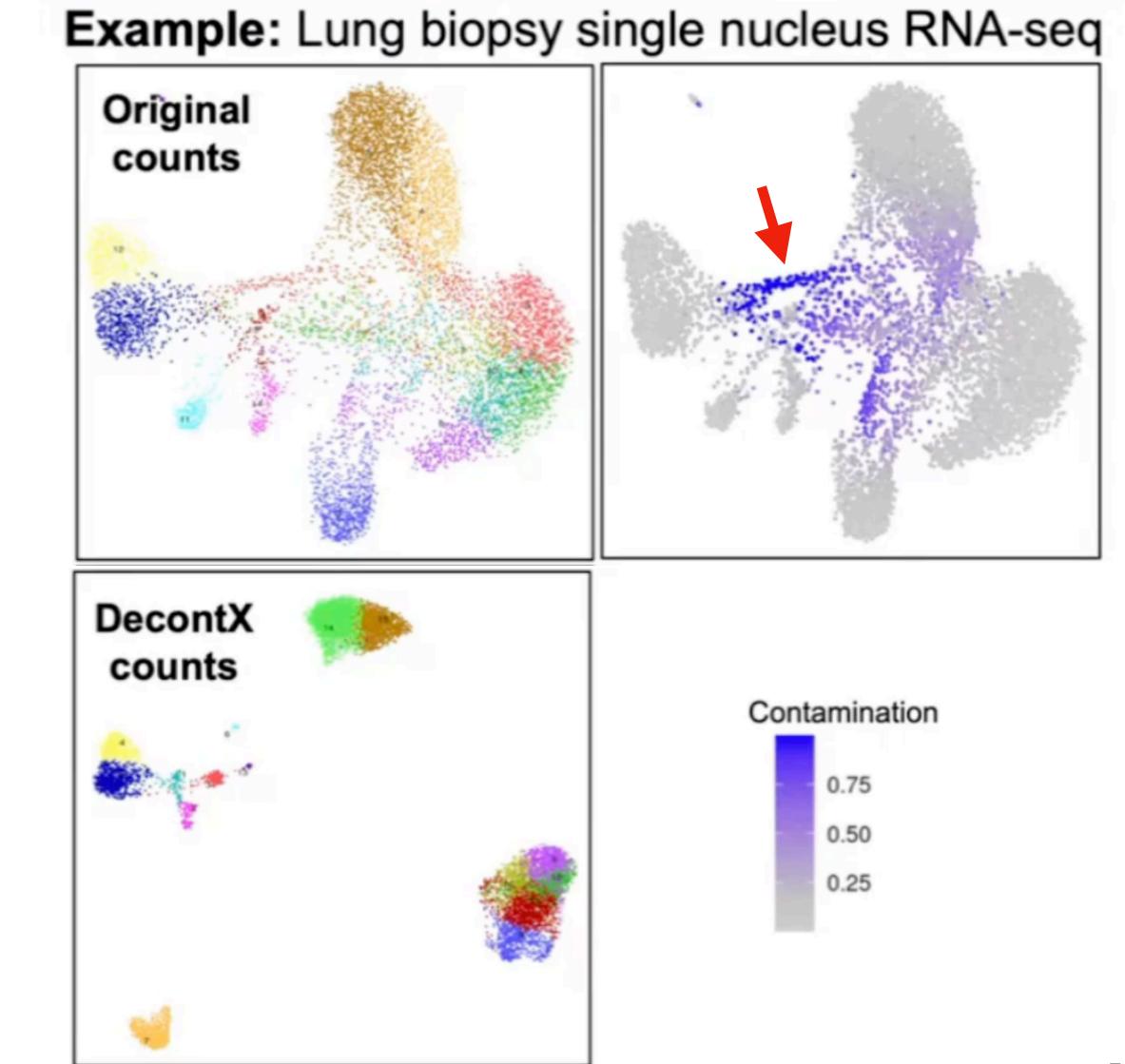
Open Access

Decontamination of ambient RNA in single-cell RNA-seq with DecontX

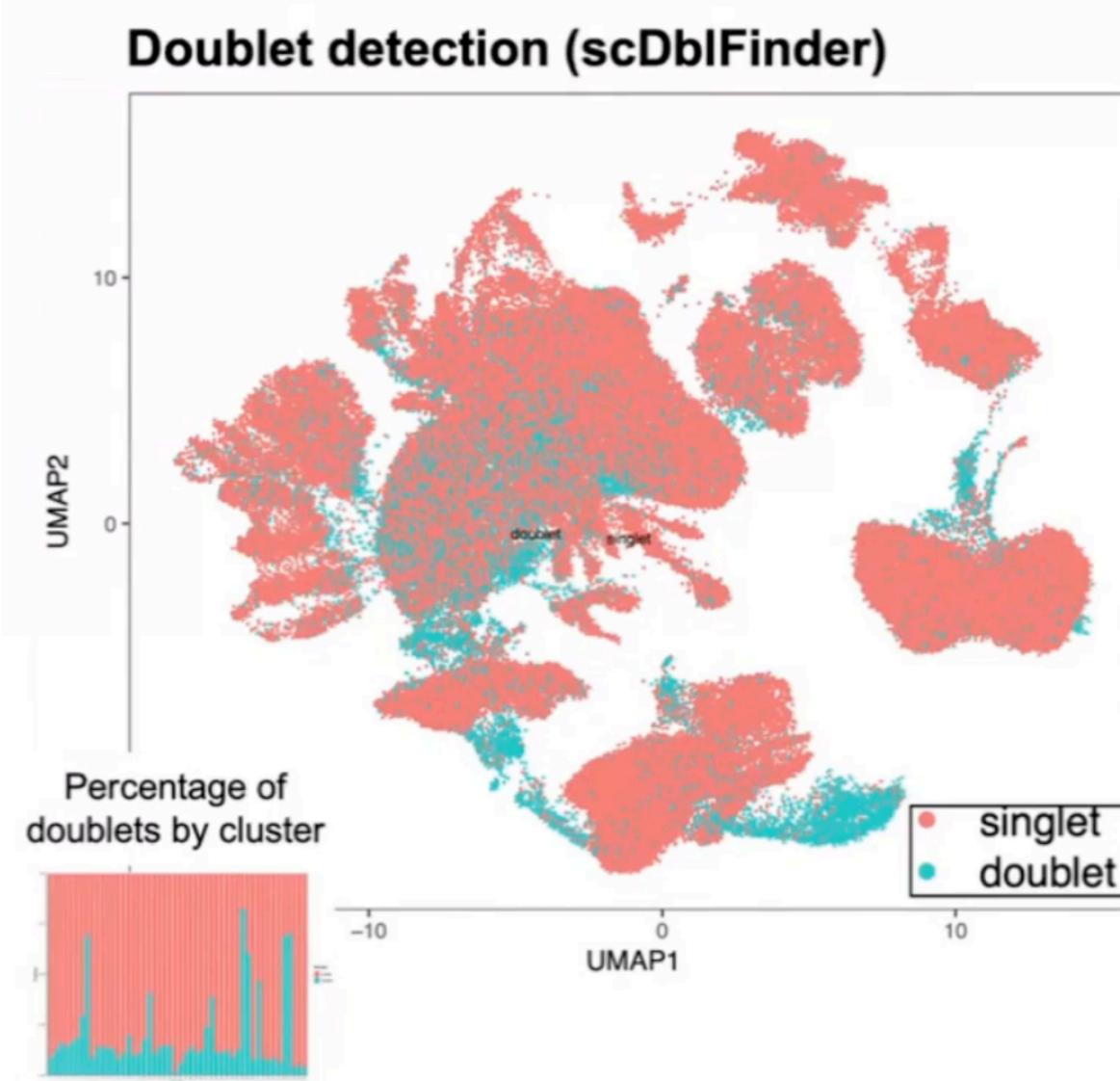
Shiyi Yang¹ , Sean E. Corbett¹, Yusuke Koga¹, Zhe Wang¹, W Evan Johnson¹, Masanao Yajima² and Joshua D. Campbell^{1*} 回



Check for updates



Strategy For Technical Contamination Filtering



Doublet often appear as *fingers* **coming off of** clusters

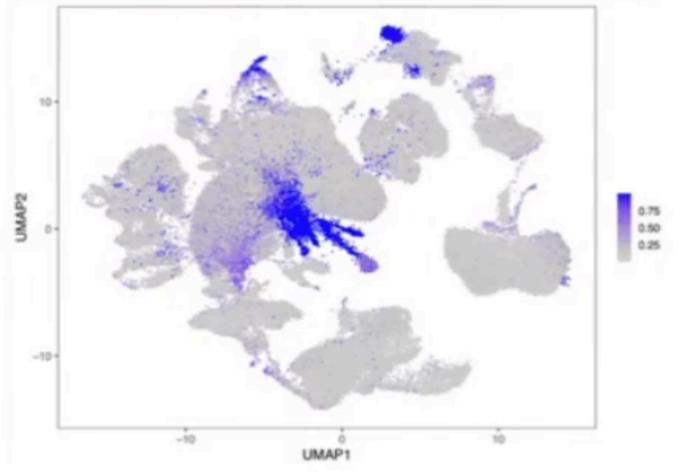
Key is to remove clusters enriched for doublets (set resolution high)

Doublets can become more prominent after sub-clustering of specific cell types

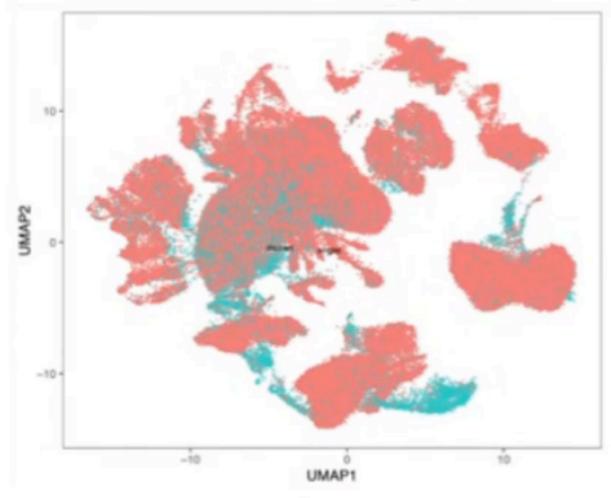
Best strategy is to verify doublet calls with double positive expression of known markers

Caveat: Watch out for transitory cell types **False Positives**

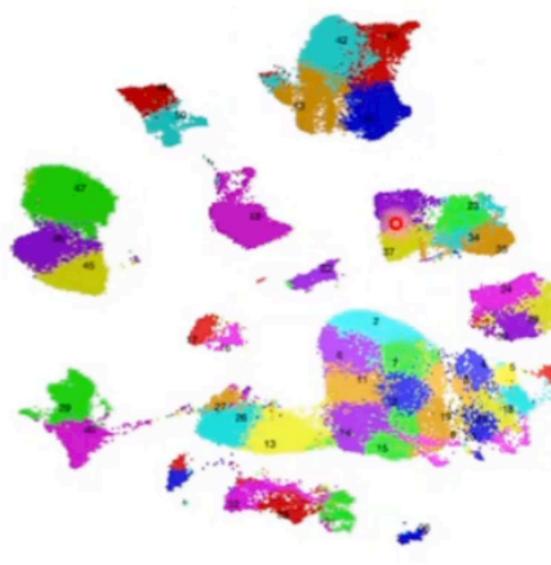
Example — Large number of captured cells per sample



Doublet detection (scDblFinder)



- Removed doublet 1) enriched clusters
- Removed highly 2) contaminated cells
- Used decontaminated 3) counts



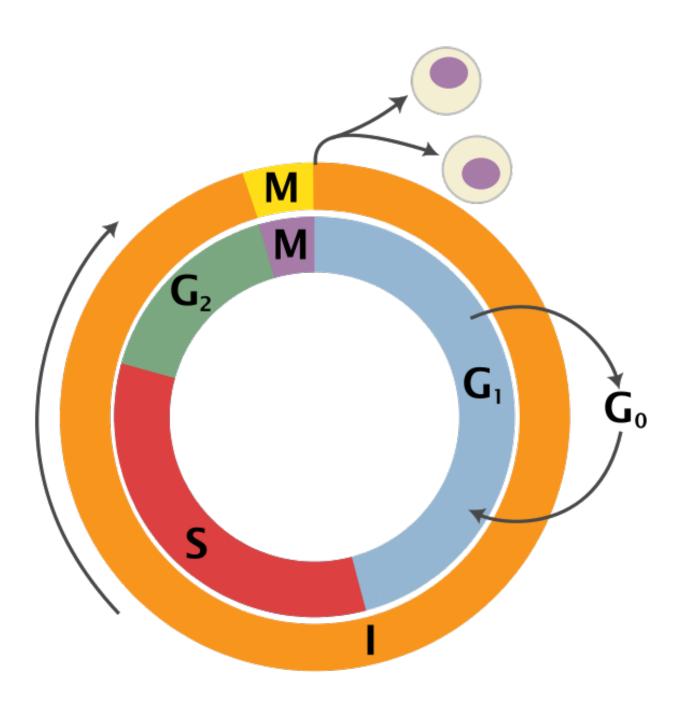
Unwanted Biological Variation

Cell Cycle Scoring:

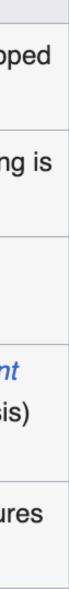
The most common biological data correction (or source of "uninteresting" variation) in single cell RNA-seq is the effects of the cell cycle on the transcriptome.

After normalizing the seurat object, assign each cell a score based on its expression of G2/M and S phase canonical markers.

The score is calculated using the **CellCycleScoring()** function in Seurat.



State	Phase	Abbreviation	Description
Resting	Gap 0	G ₀	A phase where the cell has left the cycle and has stopp dividing.
Interphase	Gap 1	G ₁	Cell growth. The <i>G₁ checkpoint</i> ensures that everything ready for DNA synthesis.
	Synthesis	S	DNA replication.
	Gap 2	G ₂	Growth and preparation for mitosis. The G_2 checkpoint ensures that everything is ready to enter the M (mitosis phase and divide.
Cell division	Mitosis	М	Cell division occurs. The <i>Metaphase Checkpoint</i> ensure that the cell is ready to complete cell division.



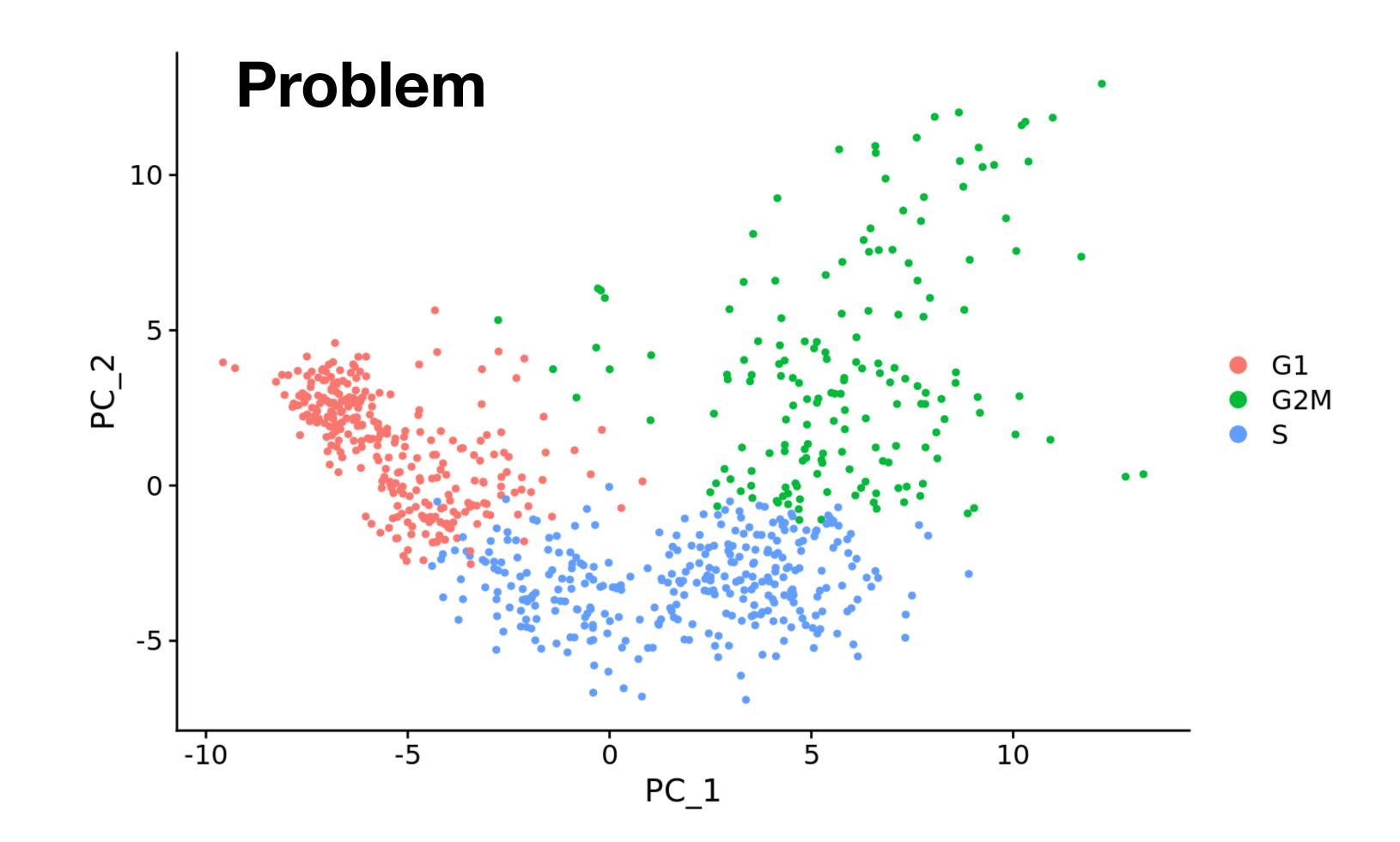
Removing Unwanted Biological Variation (CellCycle)

View(seurat object@meta.data) # View Scores in meta.data slot of seurat object

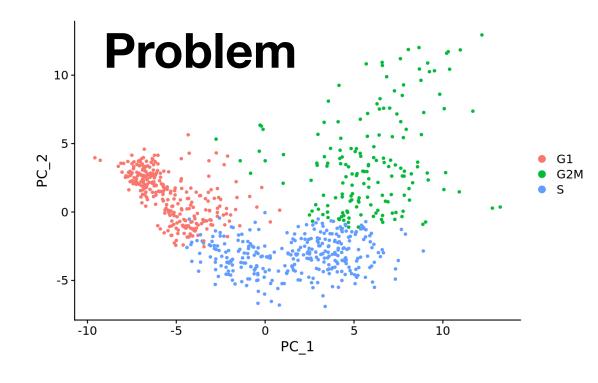
seurat_object <- seurat_object %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA()

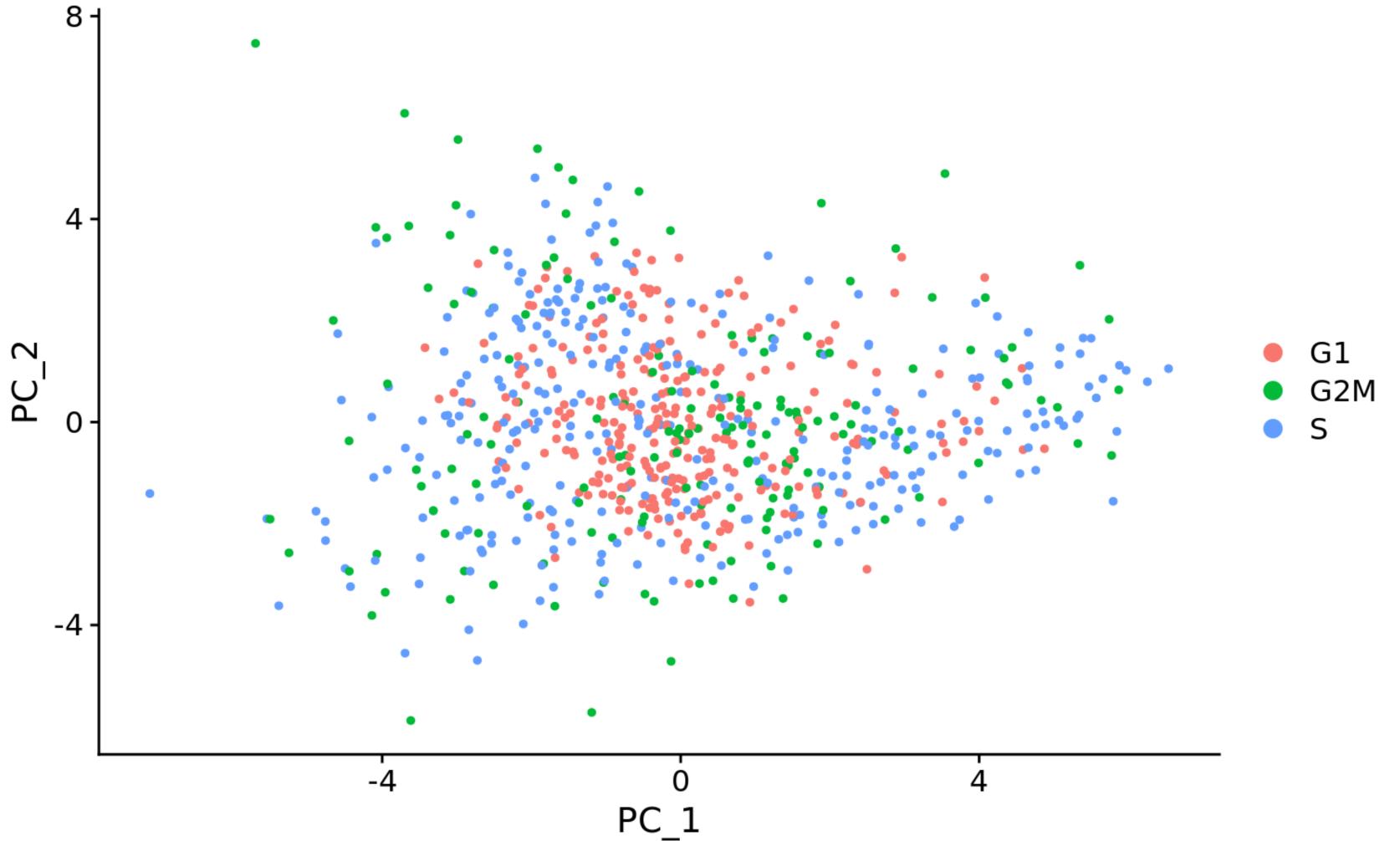
11

Removing Unwanted Biological Variation (CellCycle)



Removing Unwanted Biological Variation (CellCycle)





Removing Unwanted Biological Variation (%MT)

Mitochondrial Proportions:

Check quartile values summary(seurat object@meta.data\$percent.mt)

Turn percent.mt into categorical factor vector based on quartile values seurat_object@meta.data\$mitoFr <- cut(seurat_object@meta.data\$mitoRatio,</pre> breaks=c(-Inf, \$q1, \$q2/median, \$q3, Inf),

seurat_object <- seurat_object %>% FindVariableFeatures() %>% ScaleData() %>% RunPCA()

labels=c("Low","Medium","Medium high", "High"))

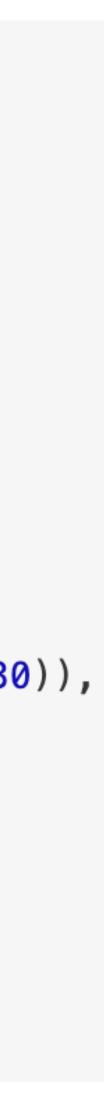
14

LogNormalize v. SCTransform

```
ScaleData(
 object,
  features = NULL,
  vars.to.regress = NULL,
  latent_data = NULL,
  split_by = NULL,
 model.use = "linear",
  use.umi = FALSE,
 do_scale = TRUE,
 do.center = TRUE,
  scale_max = 10,
  block_size = 1000,
 min.cells.to.block = 3000,
  verbose = TRUE,
```

SCTransform(object, cell.attr, do.correct.umi = TRUE, ncells = 5000, residual.features = NULL, vars.to.regress = NULL, do.scale = FALSE, do.center = TRUE, vst.flavor = "v2",conserve.memory = FALSE, seed.use = 1448145,verbose = TRUE, . . .

```
reference.SCT.model = NULL,
variable.features.n = 3000,
variable.features.rv.th = 1.3,
clip.range = c(-sqrt(x = ncol(x = umi)/30), sqrt(x = ncol(x = umi)/30)),
return.only.var.genes = TRUE,
```



2. Integration

Batch Effects

In Context of scRNA seq, batch effect refers to <u>non-biological variations</u> that arise when samples are processed in separate runs or under slightly different conditions.

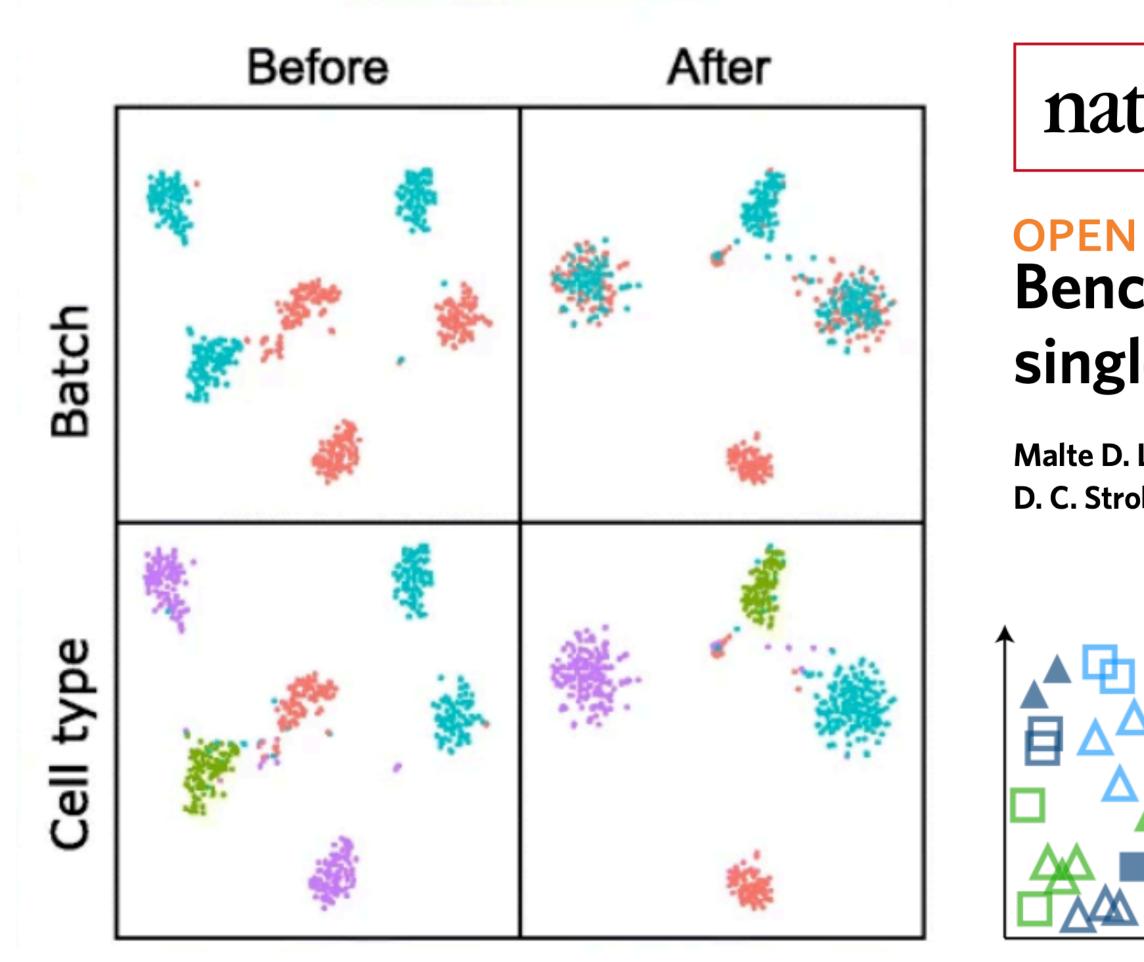
Variations can occur due to differences in:

- Sample Handling
- **Reagent Lots** \bullet
- Equipment, or lacksquare
- Time of Processing

To remove these effects, one may find it necessary to run integration/alignment

17

Integration



Tran et al. 2020 Genome Biology

nature methods



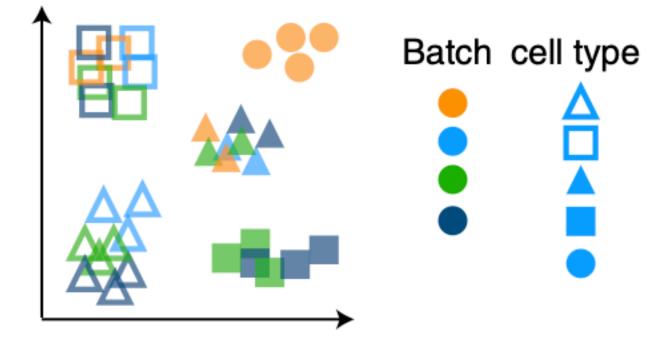
Benchmarking atlas-level data integration in single-cell genomics

Malte D. Luecken¹, M. Büttner¹, K. Chaichoompu¹, A. Danese¹, M. Interlandi², M. F. Mueller¹, D. C. Strobl¹, L. Zappia^{1,3}, M. Dugas⁴, M. Colomé-Tatché^{1,5,6} and Fabian J. Theis^{1,3,5}

BBKNN, Conos, scGEN, scVI, Harmony, Scanorama, Seurat v3, MNN ...

Data integration

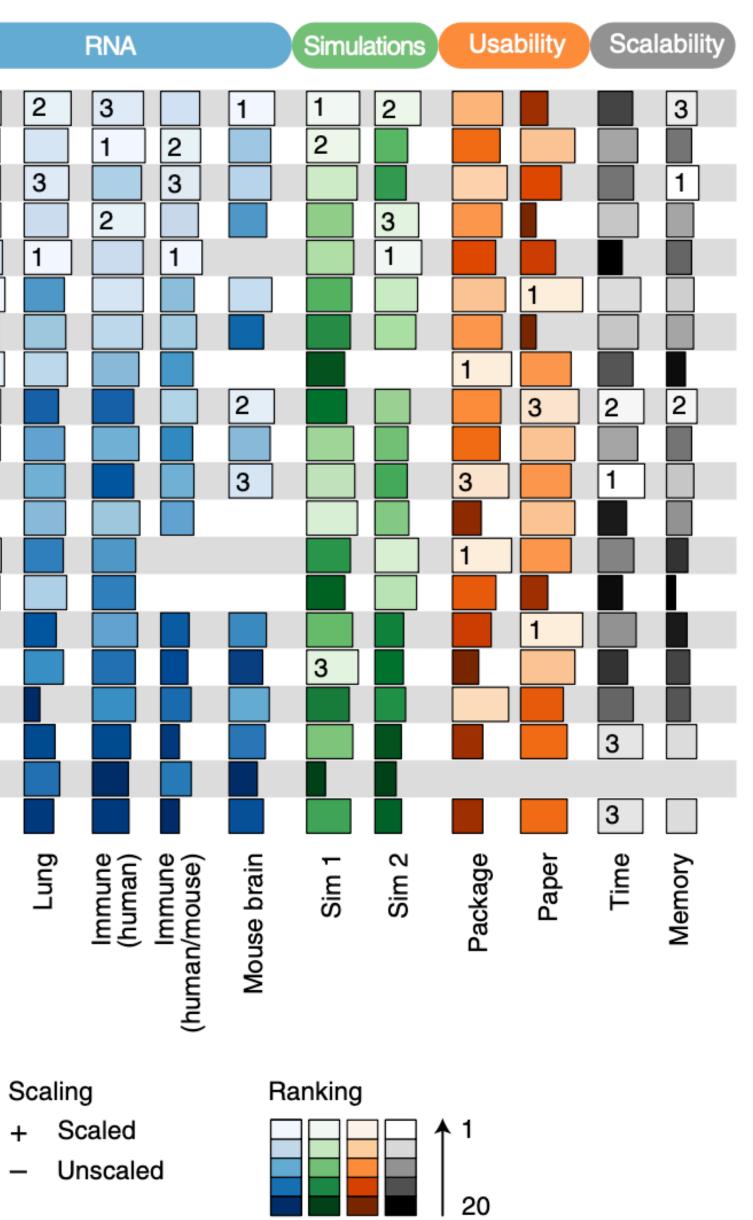
Graph embedding corrected features



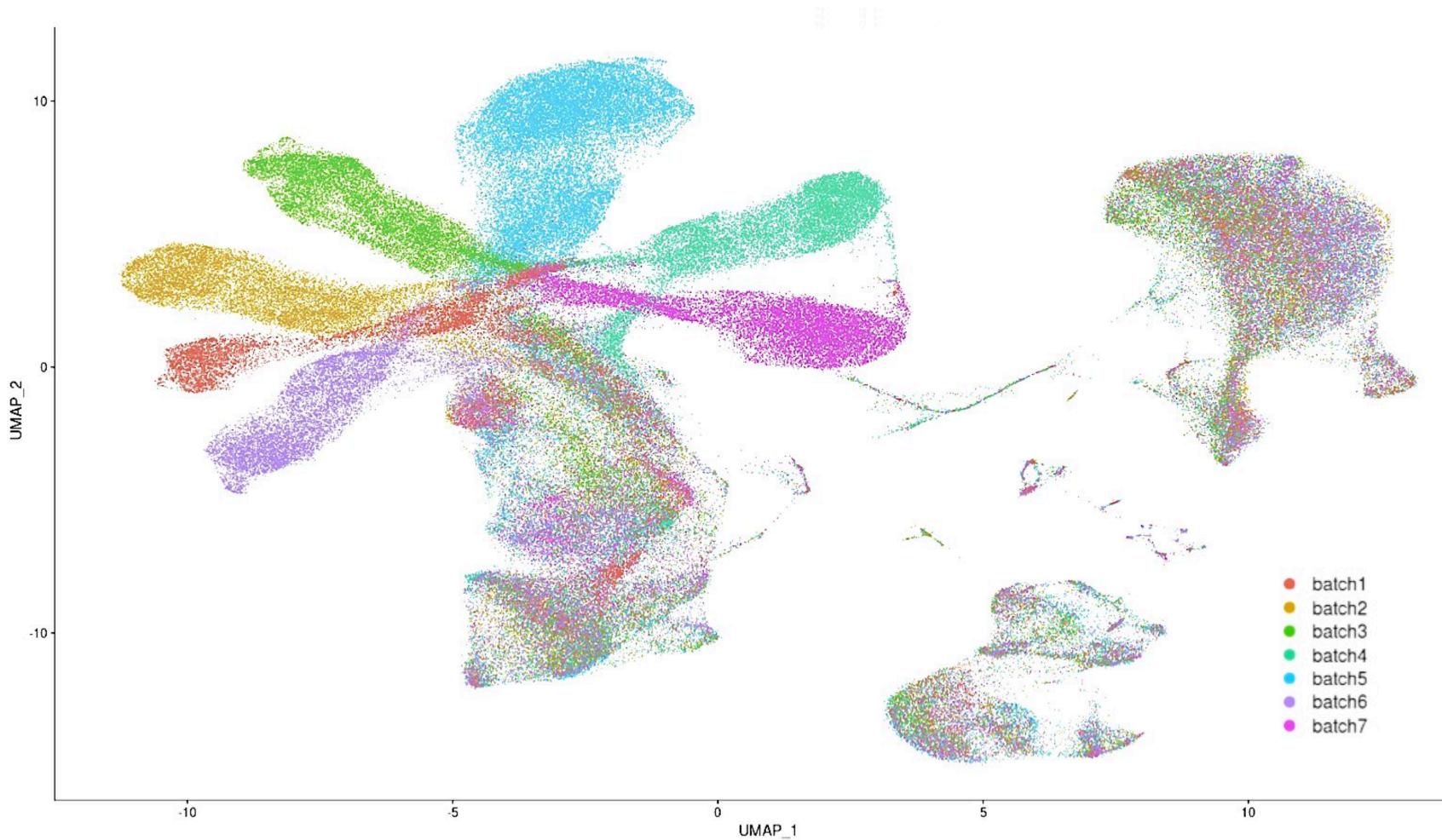
Integration

	Method				
1	scANVI*	1	HVG	_	
2	Scanorama	1	HVG	+	
3	scVI	Î.	HVG	_	
4	fastMNN	1	HVG	-	
5	scGen*	Ē	HVG	-	3
6	Harmony	1:	HVG	-	1
7	fastMNN		HVG	—	
8	Seurat v3 RPCA		HVG	+	2
9	BBKNN	K	HVG	-	
10	Scanorama		HVG	+	
11	ComBat		HVG	-	
12	MNN		HVG	+	
13	Seurat v3 CCA		HVG	-	
14	trVAE	ì	HVG	-	
15	Conos	K	HVG	-	
16	DESC	1	FULL	-	
17	LIGER	Î.	HVG	-	
18	SAUCIE	٤	HVG	+	
19	Unintegrated		FULL	-	
20	SAUCIE		HVG	+	
Rank	Name	Output	Features	Scaling	Pancreas

- Output Genes
- 🔆 Embedding
- 🔀 Graph



Batch Effects - Example



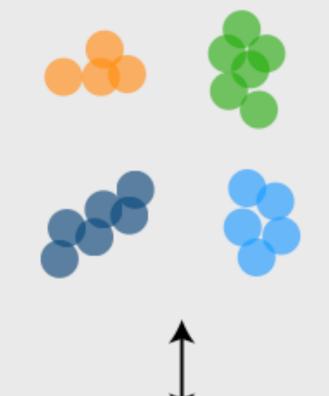
nature methods

OPEN

Benchmarking atlas-level data integration in single-cell genomics

Malte D. Luecken¹, M. Büttner¹, K. Chaichoompu¹, A. Danese¹, M. Interlandi², M. F. Mueller¹, D. C. Strobl¹, L. Zappia^{1,3}, M. Dugas⁴, M. Colomé-Tatché^{1,5,6} and Fabian J. Theis^{1,3,5}

Batch removal





Considerations & Strategies when performing integration

integration

variability in your data:

- How were samples processed (day, protocol, treatments, conditions)
- If you are looking at different conditions, do you expect it to affect all cell types or a subset of cell types?
- Important to have biological positive controls to guide integration process (e.g. known cell types, pathways or marker genes)

- Should integration be between studies, batches or samples?
- One popular approach has been to perform an initial integration of all cells to align 'major' cell types and then re-cluster individual cell types without
- Often requires some prior understanding of biological and technical

Seurat Supported Integration Methods

Canonical Correlation Analysis (CCA)

Perform canonical correlation analysis (CCA):

CCA identifies shared sources of variation between the conditions/groups.

Using the 3000 most variant genes from each sample This step roughly aligns the cells using the greatest shared sources of variation.

Identify anchors or mutual nearest neighbors (MNNs) across datasets (sometimes incorrect anchors are identified)

Filter anchors to remove incorrect anchors: Assess the similarity between anchor pairs by the overlap in their local neighborhoods (incorrect anchors will have low scores)

Integrate the conditions/datasets:

Use anchors and corresponding scores to transform the cell expression values, allowing for the integration of the conditions/datasets (different samples, conditions, datasets, modalities)

Analysis | Published: 02 April 2018

Integrating single-cell transcriptomic data across different conditions, technologies, and species

Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi & Rahul Satija

Nature Biotechnology 36, 411–420 (2018) Cite this article

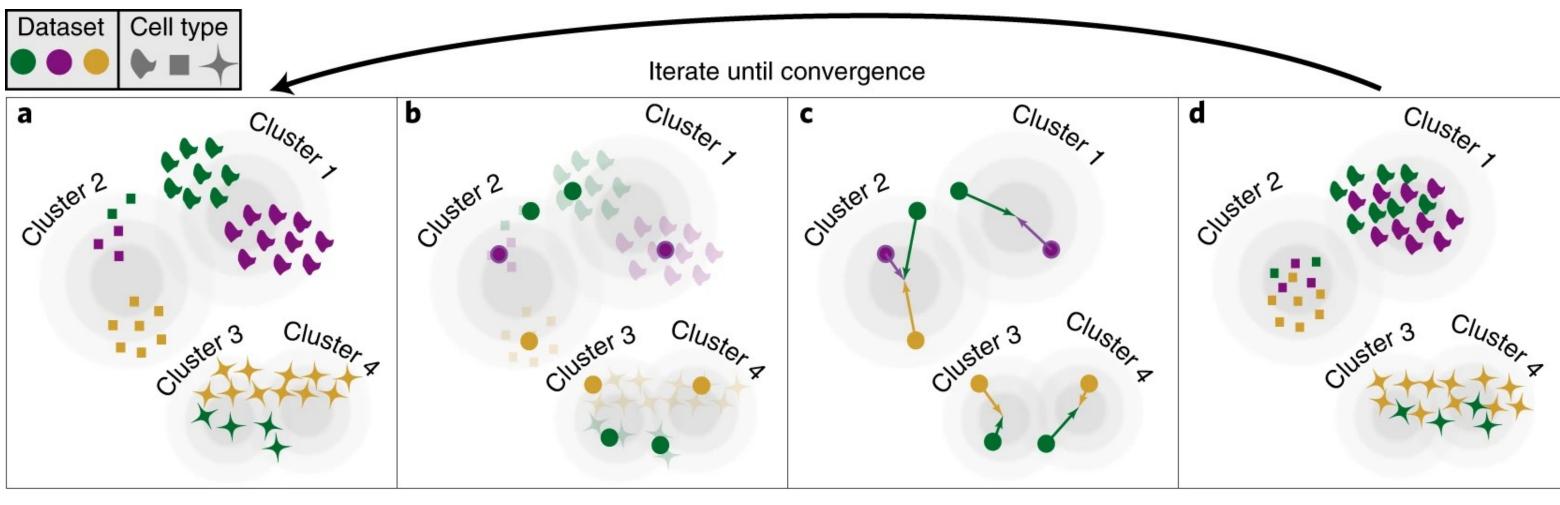
148k Accesses | 5516 Citations | 347 Altmetric | Metrics



Seurat Supported Integration Methods

Harmony Integration

Harmony iteratively learns a cell-specific linear correction function



Soft assign cells to clusters, favoring mixed dataset representation

Get cluster centroids for each dataset

Get dataset correction factors for each cluster

Move cells based on soft cluster membership Faster and more efficient than CCA; More reliable for Batch effected studies; Suffers less from over-correction;

Seurat Supported Integration Methods

```
CCA
RPCA
Harmony
FastMNN
scVI
```

obj <- IntegrateLayers(</pre> object = obj, method = CCAIntegration, verbose = FALSE

```
obj <- IntegrateLayers(</pre>
  object = obj, method = RPCAIntegration,
  orig.reduction = "pca", new.reduction = "integrated.rpca",
  verbose = FALSE
```

```
obj <- IntegrateLayers(</pre>
  object = obj, method = HarmonyIntegration,
  orig.reduction = "pca", new.reduction = "harmony",
  verbose = FALSE
```

```
obj <- IntegrateLayers(</pre>
  object = obj, method = FastMNNIntegration,
  new.reduction = "integrated.mnn",
  verbose = FALSE
```

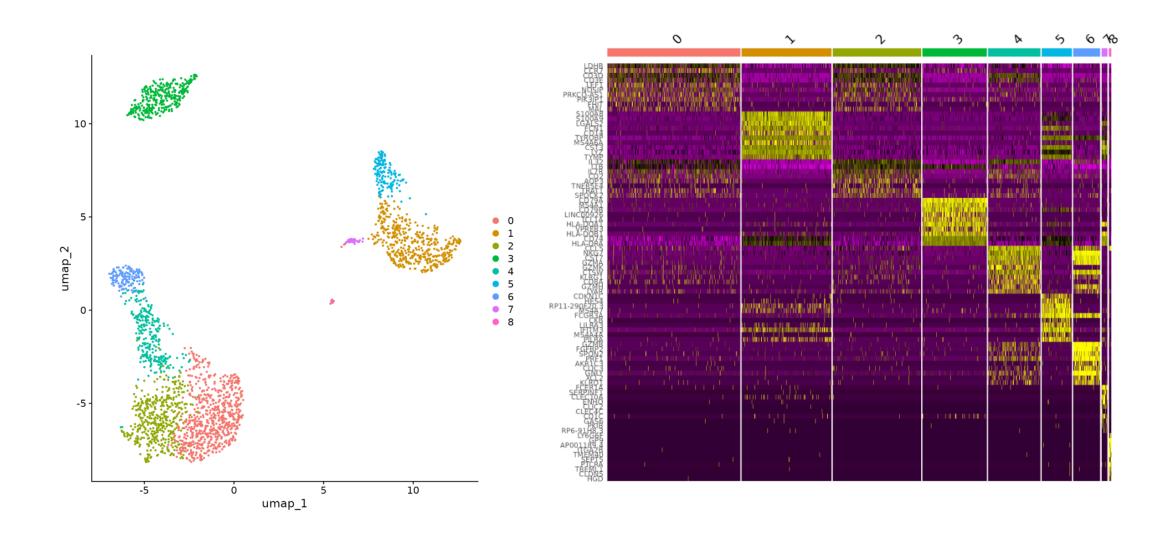
```
obj <- IntegrateLayers(</pre>
  object = obj, method = scVIIntegration,
  new.reduction = "integrated.scvi",
  conda_env = "../miniconda3/envs/scvi-env", verbose = FALSE
```

- orig.reduction = "pca", new.reduction = "integrated.cca",

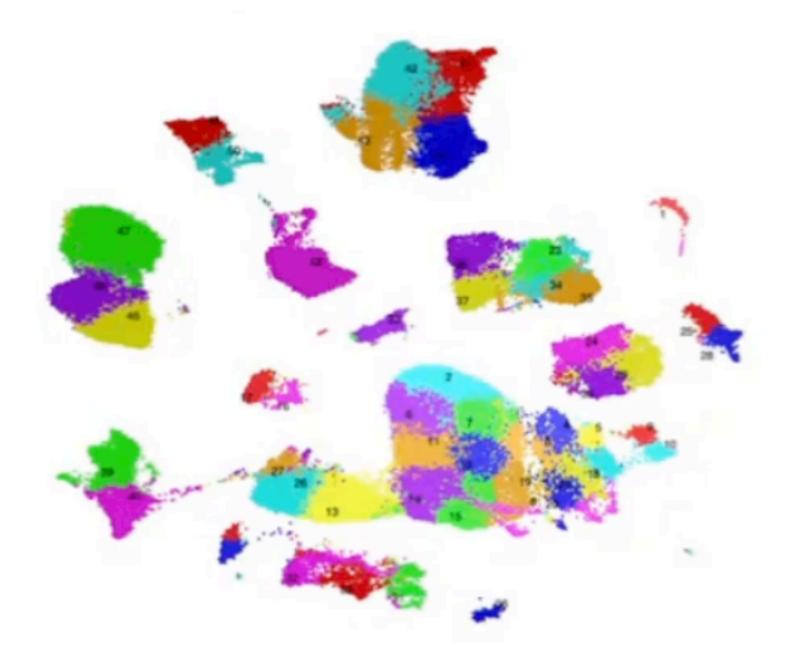
3. Downstream Analysis

Approaches for FindMarker and Differential Expression

Tries to find 'up-regulated' genes by comparing each cluster to all other clusters



Can be challenging for complex datasets with many cell types and subpopulations



In Seurat we can use Find Markers function to perform DE *between* clusters and also *within* clusters Uses *Wilcoxon Rank Sum* Test for DE by default

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

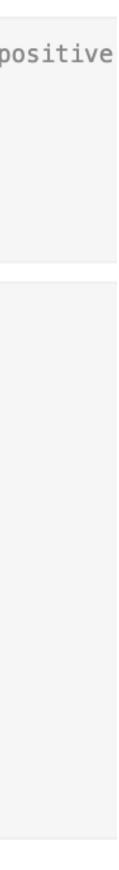
```
FindAllMarkers(
  object,
  assay = NULL,
 features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
  slot = "data",
  min.pct = 0.01,
  min.diff.pct = -Inf,
  node = NULL,
  verbose = TRUE,
  only.pos = FALSE,
  max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
  min.cells.feature = 3,
  min.cells.group = 3,
 mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  return.thresh = 0.01,
  densify = FALSE,
  . . .
```

```
# ones
pbmc.markers <- FindAllMarkers(pbmc, only.pos = TRUE)</pre>
pbmc.markers %>%
   group_by(cluster) %>%
   dplyr::filter(avg_log2FC > 1)
## # A tibble: 7,046 × 7
## # Groups: cluster [9]
         p_val avg_log2FC pct.1 pct.2 p_val_adj cluster gene
##
         <dbl>
                    <dbl> <dbl> <dbl>
                                         <dbl> <fct>
                                                       <chr>
##
                   1.19 0.897 0.593 2.39e-105 0
## 1 1.74e-109
                                                       LDHB
## 2 1.17e- 83
                   2.37 0.435 0.108 1.60e- 79 0
                                                       CCR7
                   1.09 0.838 0.403 1.23e- 74 0
## 3 8.94e- 79
                                                       CD3D
                   1.02 0.722 0.399 4.19e- 49 0
## 4 3.05e- 53
                                                       CD3E
                    2.10 0.333 0.103 4.50e- 45 0
                                                       LEF1
## 5 3.28e- 49
                    1.25 0.623 0.358 9.13e- 45 0
                                                       NOSIP
## 6 6.66e- 49
## 7 9.31e- 44
                    2.02 0.328 0.11 1.28e- 39 0
                                                       PRKCQ-AS1
## 8 4.69e- 43
                     1.53 0.435 0.184 6.43e- 39 0
                                                       PIK3IP1
                    2.70 0.195 0.04 2.01e- 35 0
                                                       FHIT
## 9 1.47e- 39
                   1.94 0.262 0.087 3.34e- 29 0
## 10 2.44e- 33
                                                       MAL
## # i 7,036 more rows
```

DE between clusters example

```
# find markers for every cluster compared to all remaining cells, report only the positive
```

https://satijalab.org/seurat/articles/de_vignette



In Seurat we can use Find Markers function to perform DE *between* clusters and also *within* clusters Uses *Wilcoxon Rank Sum* Test for DE by default

DE within cluster example

Find Markers case v ctrl in cluster 1

group.by = A column name present in meta.data ident.1 & ident.2 = Factor values of the group.by column subset.ident = Cluster Number or Name

For Complicated DE (datasets with many co-variates)

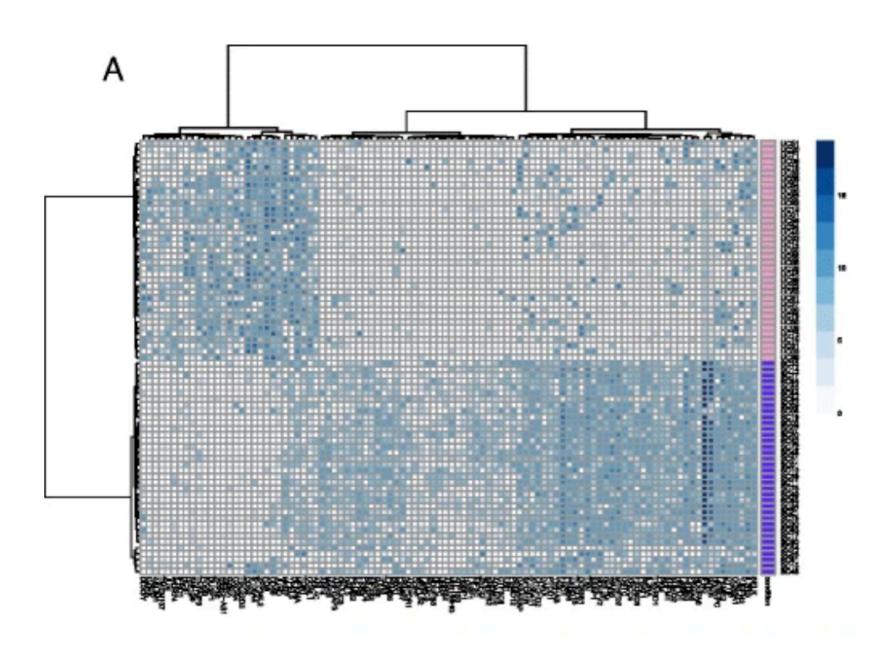
Method Open access Published: 10 December 2015

MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data

Greg Finak, Andrew McDavid, Masanao Yajima, Jingyuan Deng, Vivian Gersuk, Alex K. Shalek, Chloe K. Slichter, Hannah W. Miller, M. Juliana McElrath, Martin Prlic, Peter S. Linsley & Raphael Gottardo

<u>Genome Biology</u> **16**, Article number: 278 (2015) <u>Cite this article</u>

60k Accesses | 1339 Citations | 105 Altmetric | Metrics



In Seurat we can use Find Markers function to perform DE *between* clusters and also *within* clusters

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

```
FindAllMarkers(
  object,
  assay = NULL,
 features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
  slot = "data",
  min.pct = 0.01,
 min.diff.pct = -Inf,
 node = NULL,
 verbose = TRUE,
 only.pos = FALSE,
 max.cells.per.ident = Inf,
  random.seed = 1,
 latent.vars = NULL,
 min.cells.feature = 3,
  min.cells.group = 3,
 mean.fxn = NULL,
 fc.name = NULL,
  base = 2,
  return.thresh = 0.01,
  densify = FALSE,
  . . .
```


Find Markers case v ctrl in cluster 1 case.v.ctrl <- FindMarkers(seurat object, ident.1 = "case", subset.ident = 1, only.pos = F)

group.by = A column name present in meta.data ident.1 & ident.2 = Factor values of the group.by column subset.ident = Cluster Number or Name

Biological Replicates?

Seurat's DE tests treat each cell as an independent replicate and ignore inherent correlations between cells originating from the same sample.

```
ident.2 = "ctrl", group.by = "condition",
```

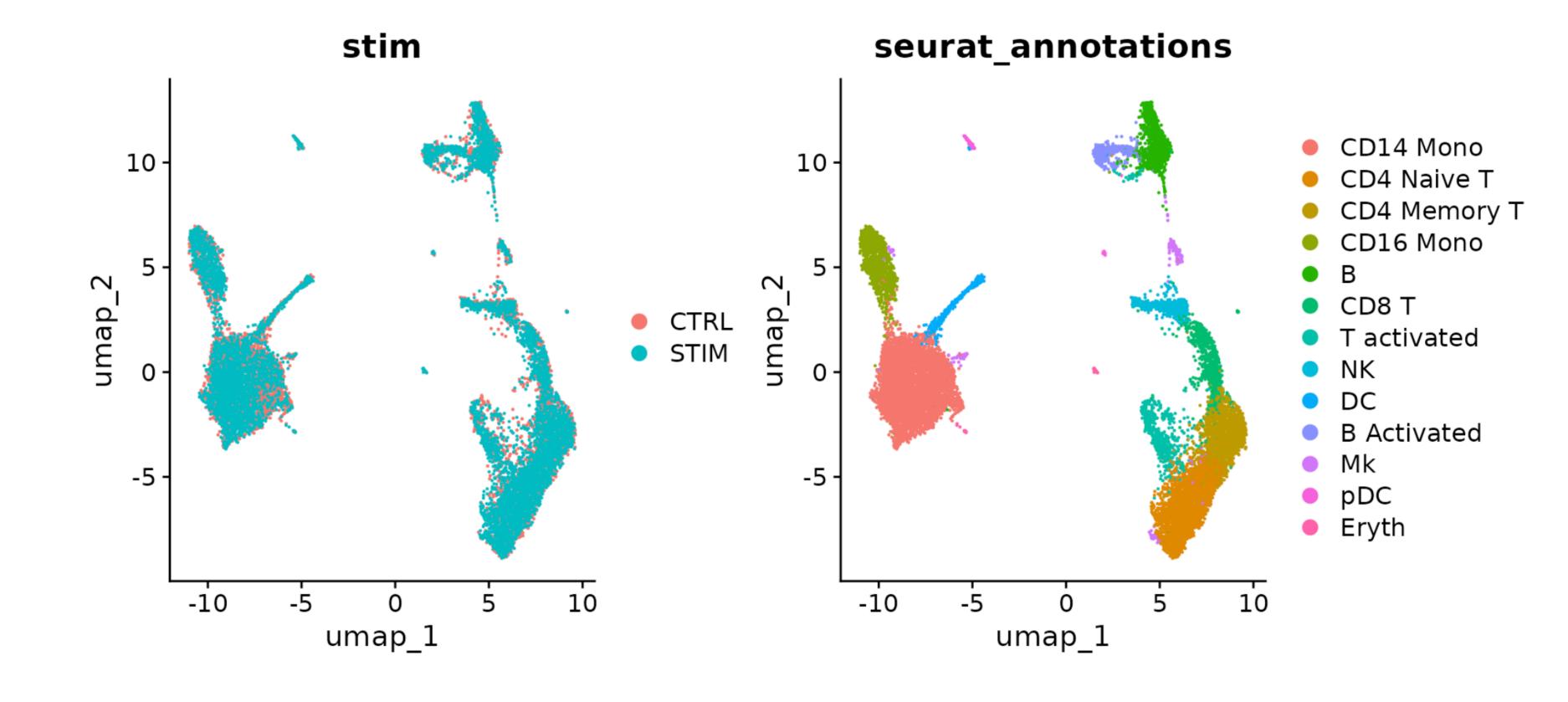

Pseudo-bulk Approach

Create a Pseudo-bulk Profile

For each cell type / cluster :

Sums together gene counts from all cells within a sample (cluster) and returns a

gene x sample matrix instead of gene x cell matrix



vithin a sample (cluster) and returns a cell matrix

2	1
J	

Pseudo-bulk Approach

Create a Pseudo-bulk Profile

For each cell type / cluster :

Sums together gene counts from all cells within a sample (cluster) and returns a gene x sample matrix instead of gene x cell matrix

Returns summed counts ("pseudobulk") for each identity class.

```
AggregateExpression(
  object,
  assays = NULL,
  features = NULL,
  return.seurat = FALSE,
  group.by = "ident",
  add.ident = NULL,
  normalization.method = "LogNormalize",
  scale factor = 10000,
  margin = 1,
 verbose = TRUE,
  . . .
```

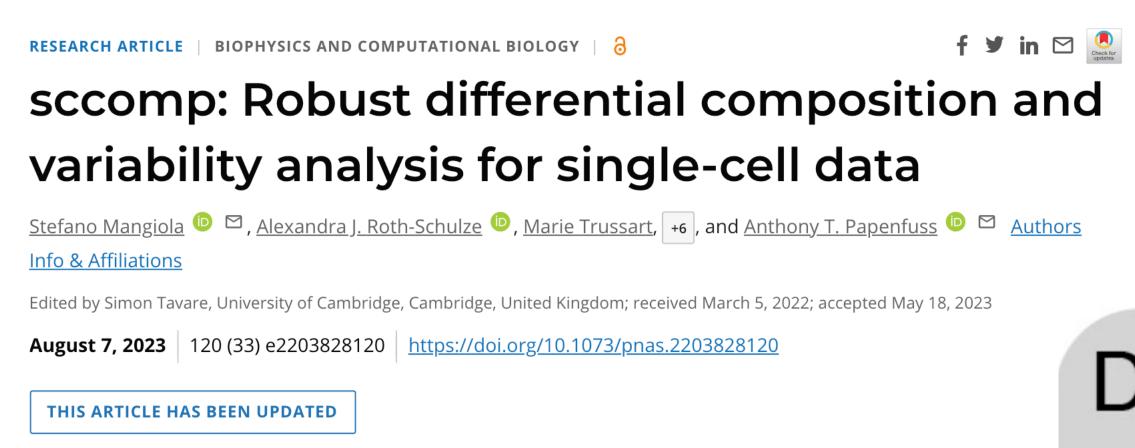
For each cell type

gene	ctrl_1	ctrl_2	exp_1	exp_1
geneA	10	11	56	45
geneB	0	0	128	54
geneC	42	41	59	41
geneD	103	122	1	23
geneE	10	23	14	56
geneF	0	1	2	0

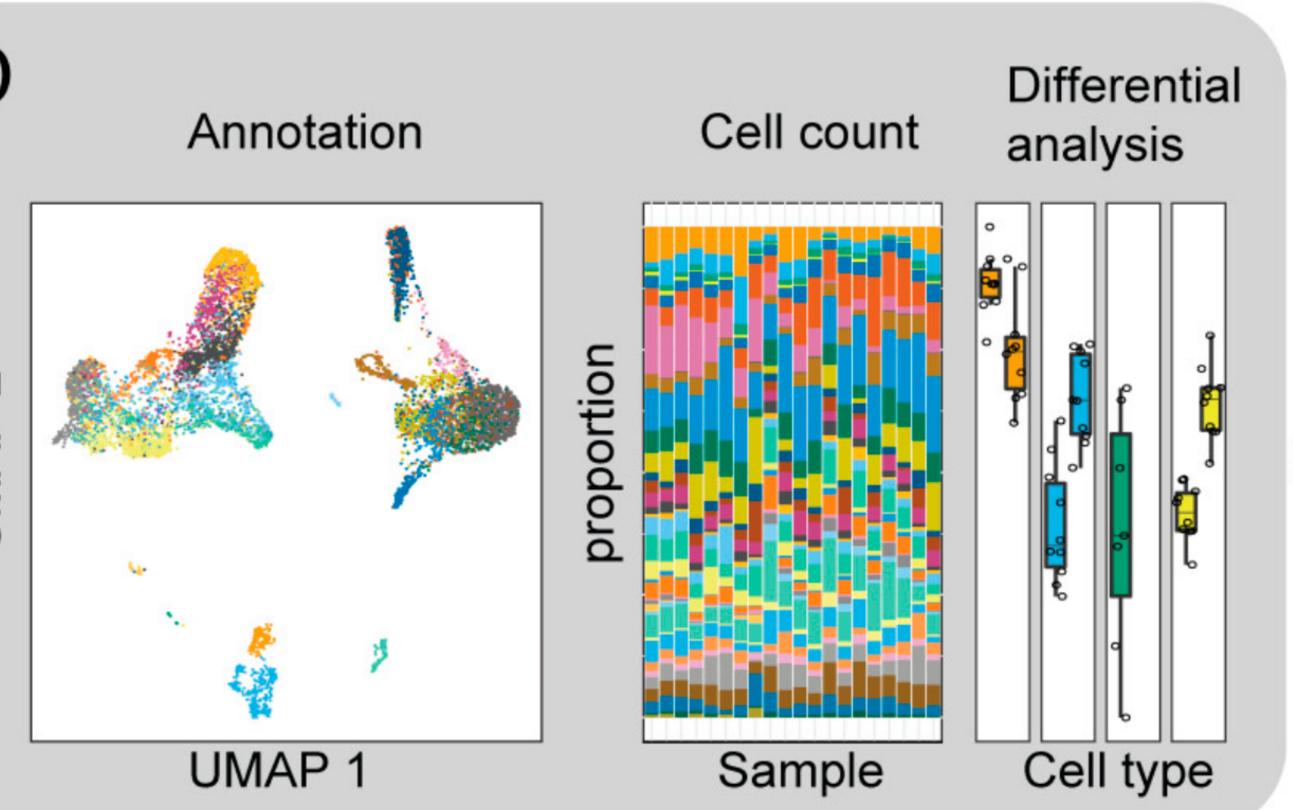
DESeq2

EdgeR

Differential Abundance Analysis



Tests to check if proportion of cells within clusters are associated with a particular phenotype e.g. cases v ctrls



Gene Set Enrichment Analysis

Software/Web server Article

UCell: Robust and scalable single-cell gene signature scoring

Massimo Andreatta^{a,b,*}, Santiago J. Carmona^{a,b}

^a Ludwig Institute for Cancer Research, Lausanne Branch, and Department of Oncology, CHUV and University of Lausanne, Epalinges 1066, Switzerland ^b Swiss Institute of Bioinformatics, Lausanne, Switzerland

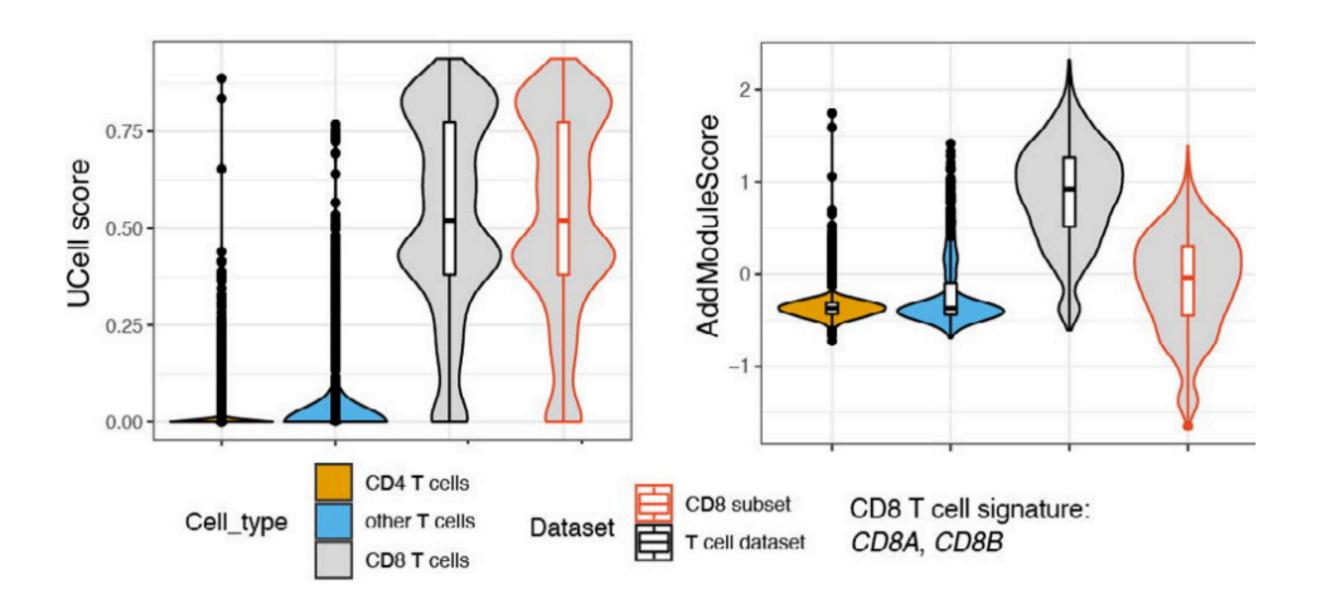
ARTICLE INFO

Article history: Received 11 May 2021 Received in revised form 22 June 2021 Accepted 22 June 2021 Available online 30 June 2021

Keywords: Single-cell Gene signature Module scoring Cell type Gene set enrichment

ABSTRACT

UCell is an R package for evaluating gene signatures in single-cell datasets. UCell signature scores, based on the Mann-Whitney U statistic, are robust to dataset size and heterogeneity, and their calculation demands less computing time and memory than other available methods, enabling the processing o large datasets in a few minutes even on machines with limited computing power. UCell can be applied to any single-cell data matrix, and includes functions to directly interact with Seurat objects. The UCel package and documentation are available on GitHub at https://github.com/carmonalab/UCell. © 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons org/licenses/by/4.0/)



Published online 7 July 2020

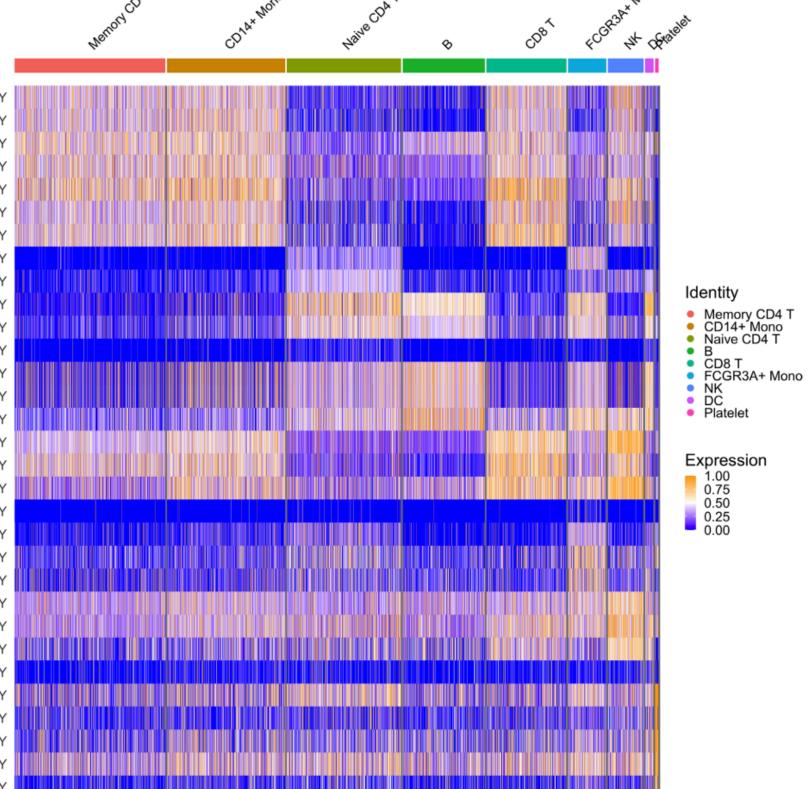
Nucleic Acids Research, 2020, Vol. 48, No. 16 e94 doi: 10.1093/nar/gkaa582

Variance-adjusted Mahalanobis (VAM): a fast and accurate method for cell-specific gene set scoring

Hildreth Robert Frost^{®*}

Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA

BIOCARTA-TOB1-PATHWAY BIOCARTA-TCAPOPTOSIS-PATHWAY **BIOCARTA-PRION-PATHWAY BIOCARTA-CTLA4-PATHWAY BIOCARTA-TCRA-PATHWAY BIOCARTA-NO2IL12-PATHWAY BIOCARTA-IL17-PATHWAY BIOCARTA-COMP-PATHWAY BIOCARTA-MRP-PATHWAY BIOCARTA-IL5-PATHWAY BIOCARTA-INFLAM-PATHWAY BIOCARTA-MSP-PATHWAY BIOCARTA-BBCELL-PATHWAY BIOCARTA-ASBCELL-PATHWAY** BIOCARTA-BLYMPHOCYTE-PATHWAY **BIOCARTA-CTL-PATHWAY** BIOCARTA-TCYTOTOXIC-PATHWAY **BIOCARTA-MHC-PATHWAY BIOCARTA-CLASSIC-PATHWAY BIOCARTA-RECK-PATHWAY BIOCARTA-BARRESTIN-PATHWAY BIOCARTA-CBL-PATHWAY BIOCARTA-D4GDI-PATHWAY BIOCARTA-NKCELLS-PATHWAY** BIOCARTA-SET-PATHWAY **BIOCARTA-AMAN-PATHWAY BIOCARTA-UCALPAIN-PATHWAY** BIOCARTA-PARKIN-PATHWAY BIOCARTA-MCALPAIN-PATHWAY **BIOCARTA-INTEGRIN-PATHWAY BIOCARTA-P35ALZHEIMERS-PATHWA**



Automated Cell Type Labeling with a reference

Seurat

Azimuth is a web application that uses an annotated reference dataset to automate the processing, analysis, and interpretation of a new single-cell RNA-seq or ATAC-seq experiment. Azimuth leverages a 'reference-based mapping' pipeline that inputs a counts matrix and performs normalization, visualization, cell annotation, and differential expression (biomarker discovery). All results can be explored within the app, and easily downloaded for additional downstream analysis.

The development of Azimuth is led by the New York Genome Center Mapping Component as part of the NIH Human Biomolecular Atlas Project (HuBMAP). Thirteen molecular reference maps are currently available, with more coming soon.

scArches

Analysis Open access Published: 30 August 2021

Mapping single-cell data to reference atlases by transfer learning

Mohammad Lotfollahi, Mohsen Naghipourfar, Malte D. Luecken, Matin Khajavi, Maren Büttner, Marco Wagenstetter, Žiga Avsec, Adam Gayoso, Nir Yosef, Marta Interlandi, Sergei Rybakov, Alexander V. Misharin & Fabian J. Theis

Nature Biotechnology 40, 121–130 (2022) Cite this article

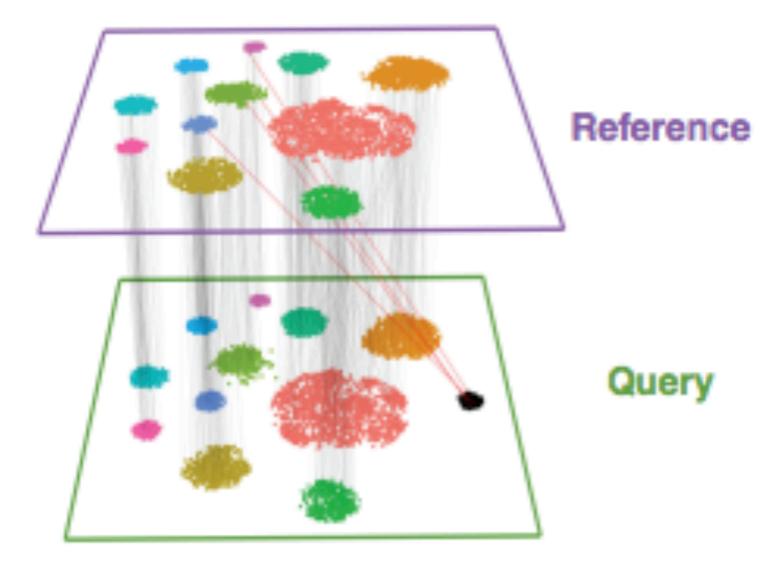
Article Published: 14 January 2019

SingleR

Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage

Dvir Aran, Agnieszka P. Looney, Legian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna Chak, Ram P. Naikawadi, Paul J. Wolters, Adam R. Abate, Atul J. Butte & Mallar Bhattacharya 🖾

Nature Immunology 20, 163–172 (2019) Cite this article



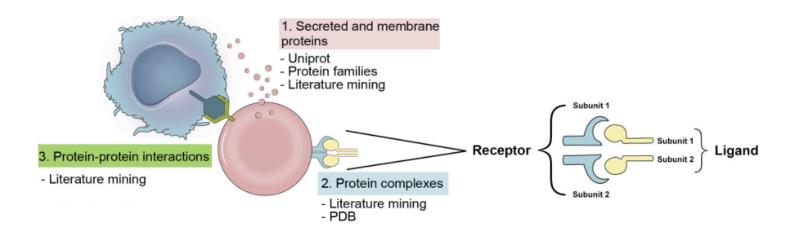
Cell-cell Communication analysis for predicting interactions between cell types

> Nat Protoc. 2020 Apr;15(4):1484-1506. doi: 10.1038/s41596-020-0292-x. Epub 2020 Feb 26.

CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligandreceptor complexes

Mirjana Efremova ¹, Miquel Vento-Tormo ², Sarah A Teichmann ¹ ³, Roser Vento-Tormo ⁴

Affiliations + expand PMID: 32103204 DOI: 10.1038/s41596-020-0292-x

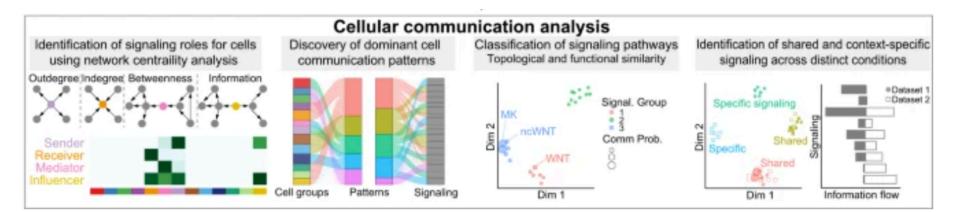


Article Open access Published: 17 February 2021

Inference and analysis of cell-cell communication using CellChat

Suoqin Jin, Christian F. Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-Hsiang Kuan, Peggy Myung, Maksim V. Plikus ⊠ & Qing Nie ⊠

Nature Communications 12, Article number: 1088 (2021) Cite this article

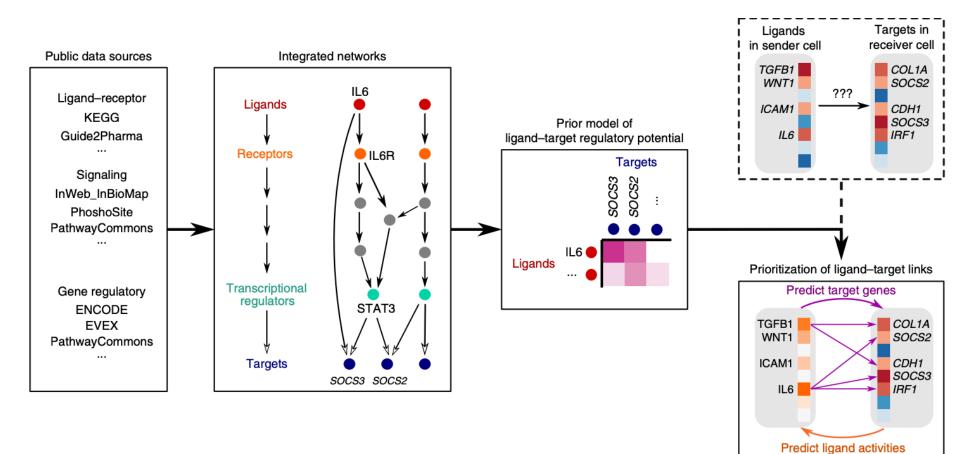


nature methods

BRIEF COMMUNICATION https://doi.org/10.1038/s41592-019-0667-5

NicheNet: modeling intercellular communication by linking ligands to target genes

Robin Browaeys^{1,2}, Wouter Saelens^{1,2,3} and Yvan Saeys^{1,2,3*}



4. Interactive Analysis

Automated Cell Type Labeling with a reference

Seurat

Azimuth is a web application that uses an annotated reference dataset to **automate the processing**, **analysis**, **and interpretation of a new single-cell RNA-seq** or ATAC-seq experiment. Azimuth leverages a 'reference-based mapping' pipeline that inputs a counts matrix and performs normalization, visualization, cell annotation, and differential expression (biomarker discovery). All results can be explored within the app, and easily downloaded for additional downstream analysis.

The development of Azimuth is led by the New York Genome Center Mapping Component as part of the NIH Human Biomolecular Atlas Project (HuBMAP). Thirteen molecular reference maps are currently available, with more coming soon.

SCTK

Single Cell ToolKit

The Single Cell ToolKit (SCTK) is an R package that provides a uniform interface to several popular tools and workflows for comprehensive analysis of single cell RNA-seq data.

Latest Documentation v2.12.1

The Single Cell Toolkit (SCTK) in the singleCellTK package provides an interface to popular tools for importing, quality control, analysis, and visualization of single cell RNA-seq data. SCTK allows users to seamlessly integrate tools from various packages at different stages of the analysis workflow. A general "a la carte" workflow gives users the ability access to multiple methods for data importing, calculation of general QC metrics, doublet detection, ambient RNA estimation and removal, filtering, normalization, batch correction or integration, dimensionality reduction, 2-D embedding, clustering, marker detection, differential expression, cell type labeling, pathway analysis, and data exporting. Curated workflows can be used to run Seurat and Celda. Streamlined quality control can be performed on the command line using the SCTK-QC pipeline. Users can analyze their data using commands in the R console or by using an interactive Shiny Graphical User Interface (GUI). Specific analyses or entire workflows can be summarized and shared with comprehensive HTML reports generated by Rmarkdown.

