
Docker and Singularity
Two Linux container systems

Hardware

Kernel
e.g. Linux kernel

Operating system
e.g. Ubuntu,

CentOS

Applications

Traditional
Software

Layout

App1 App2

App3 App4

Shared
libs

Conda

App1

libs

App3

libs

App2

libs

App4

libs

(Environments)

Docker
or

Singularity

App1

libs

Ubuntu CentOS

App2

libs

(Containers)

Virtual
Machines

App1

libs

Ubuntu
Linux Windows

App2

libs

(VMs)

Software architecture

Benefits of Containers

1. Isolation ensures good reproducibility;

2. Good portability between host servers;

3. Consume very little computing power, not like the VM.

And best of all, if you mess up a container,
start a new one.

Overview of Docker

Dockerfile:
a text file (script) with instructions how to build a Docker image.
• Including name of operating system, its version and where to

download;
• Software/libraries, versions and where to download;
• Environment variable in the system

Docker image:
An all-inclusive software file built from the Docker file, including
• Operating system;
• software, libraries.

Docker container:
A running instance of the Docker image.

Dockerfile is not always reproducible for
two reasons:
1. The developer often omits the version;
2. The software download link stops working;

Docker image is reproducible.

FROM ubuntu:18.04
RUN apt-get -y update
RUN apt-get install r-base

…

Dockerfile
Docker Image

Docker Container

Overview of Singularity

Singularity definition file (def file):
a text file (script) with instructions how to build a Singularity image.
• Including name of operating system, its version and where to

download;
• Software/libraries, versions and where to download;
• Environment variable in the system

Singularity image:
An all-inclusive software file built from the def file, including
• Operating system;
• software, libraries.

Singularity container:
A running instance of the Singularity image.

Singularity def file is not always
reproducible for two reasons:
1. The developer often omits the version;
2. The software download link stops working;

Singularity image is reproducible.

BootStrap: library
From: ubuntu:18.04
%post

apt -y update
apt -y install r-base

Def file Singularity Image Singularity container

Script
…..
…..

Image
Container

Build
image

Start
container

Run
software

You You

Root Root Root

Fake root

Docker

Singularity

Main difference: User ID

With Docker, the user can modify root directories
on the host system. That is a security risk, and
most HPC centers do not allow Docker.

On BioHPC, use “docker1” command for “docker”
What is “docker1”?
A script to scan the parameters before passing on to the
Docker software, to ensure security of the host.

Among the features of docker1:
• Only directories under /workdir/$USER can be mounted in

Docker container;

• /workdir/$USER is automatically mounted as /workdir in
Container;

Docker is NOT supported in most HPC systems.

Docker is good for setting up services in a
server, e.g. a web server.

Singularity is easier to setup for computing in
HPC cluster. More recent versions of
Singularity can also be used for services.

It is easy to convert a Docker image into a Singularity image.

Build a Singularity Image

Two formats of Singularity images

1. .sif file

Read only file. Suitable for production.

2. Sandbox

Writable directory. Suitable for development.

Different ways to build a Singularity image

• Download from a Singularity repository;

• Convert from a Docker image;

• Build from a “Singularity Definition” file;

• Develop in a “Sandbox”, then convert to a .sif file;

• Download a Docker image and convert to a Singularity image;

• Download a Singularity image;

Commands to build singularity images

singularity pull myU.sif docker://ubuntu:20.04

* The image is saved as a file “myU.sif”

singularity pull myU.sif library://library/default/ubuntu

• Build from a “Sandbox”

• “Sandbox” is a special Singularity container,
where you can install and run software as root;

• After you finish install and test the Sandbox, you
can save the sandbox as a “.sif” image file.

#build a sandbox
singularity build --fakeroot --sandbox myUbuntu
myUbuntu.def
#start a writable shell
singularity shell --fakeroot --writable myUbuntu
#save sandbox to an image file
singularity build --fakeroot myUbuntu.sif myUbuntu

• Build from a Def file

BootStrap: library
From: ubuntu:focal

%environment

%files

%post
apt -y update
apt -y upgrade
apt-get -y install software-properties-common build-essential

cmake wget nano
add-apt-repository universe
apt -y update

An example def file Recommended practice
• Build a sandbox;

• Run Linux command line
within sandbox to install
software;

• Document each command into
a “def” file.

singularity build --fakeroot test.sif test.def

Once your def file is ready, you can build a image .sif file from the definition file

You can build a Singularity image starting from either a Docker or
a Singularity base image and modify it

BootStrap: library
From: ubuntu:18.04

%environment

%files

%post
apt -y update
apt-get -y install build-essential wget nano

BootStrap: docker
From: rocker/r-ver:4.1.1

%environment

%files

%post
R --slave -e 'install.packages("BiocManager ") '

From Singularity base image From a Docker base image

singularity build --fakeroot --sandbox myUbuntu myUbuntu.def

“singularity build” requires
“fakeroot” privilege

A “fakeroot” user has almost the same administrative rights as
real “root” but only inside the container. (This is different from docker, which
uses real “root”)

On a BioHPC server, run this command to activate “fakeroot”
privilege.

fakeroot

What is “fakeroot”?
Singularity build command:

Start Singularity Container

Start Singularity container
1. Interactive singularity shell

singularity shell myImage.sif

#Start a Singularity shell

#Run software installed in the Container

#exit a shell

exit

#Short format of the same command

./myImage.sif

Singularity shell

[qisun@cbsum1c2b010 qisun]$ cd /workdir/qisun

[qisun@cbsum1c2b010 qisun]$./ubuntu.sif
Singularity> ls /
bin environment lib media proc sbin sys var
boot etc lib64 mnt root singularity tmp workdir
dev home local opt run srv usr

Singularity> whoami
qisun

Three directories are from the host,
and the rest are from the container.

- It is like a Linux shell, but interactive with operating system within the container

Your user ID is
the same as in
host system

singularity shell --no-home my_container.sif

By default, Singularity mount your home directory into
container, this might not be desirable.

To disable,

* The R or Python packages installed in your home directory will
be picked up by R or Python within the container. This could
interfere with running software in container.

In comparison, here is the Docker container from the same image

[qisun@cbsum1c2b010 qisun]$ docker1 run -dit ubuntu:18.04 /bin/bash

[qisun@cbsum1c2b010 qisun]$ docker1 exec -it a2791b6e8a18 /bin/bash

root@a2791b6e8a18:/# ls /
bin dev home lib32 libx32 mnt proc run srv tmp var
boot etc lib lib64 media opt root sbin sys usr workdir

root@a2791b6e8a18:/# whoami
root

Your user ID is “root” in
container

/workdir is mounted
by docker1

There is no user in
/home

Accessing data files on the host system

1. Two directories are mounted by
default

1. Your home directory;
2. Current directory ($PWD);

2. You can mount extra directories
using “--bind” (or “-B”) parameter.

./myC.sif myInputDataFile

Singularity Docker

singularity shell --bind /workdir:/data myC.sif

(docker1)

1. “/workdir/$USER” is mounted as
“/workdir” in container;

2. You can mount extra directories
using “--mount” (or “-v”) parameter.

(You can only mount directory under “/workdir/$USER” or
“/local/storage”)

(You can mount any directories that you have the read/write
permission)

docker1 run -v /workdir/$USER/data/:/data ubuntu

If you create any new files in container

Singularity Docker (docker1)

docker1 claim

The owner of the files is the
your BioHPC user ID.

The owner of the file is root

docker1 claim PATH_TO_THE_DIRECTORY

To claim every file under /workdir/$USER

To claim on file/directory

Run software in Singularity

• Run software through interactive shell

• Run software directly without interactive shell

Two alternative ways

[qisun@cbsum1c2b010 qisun]$./ubuntu.sif

Singularity>bwa index mygenome.fasta

1. Run software in Singularity shell

2. Run software in Singularity container directly
without interactive shell

singularity exec myImage.sif bwa mem genomeDB s1.fastq.gz

#Run a software (e.g. bwa)

./myImage.sif bwa mem genomeDB s1.fastq.gz

#Short format of the same command

./myImage.sif mem genomeDB s1.fastq.gz

#If set the container’s default software as bwa:

singularity shell --cleanenv my_container.sif

Singularity passes all environment variables into container.
Sometimes, this is not desirable

If you have environment variable PYTHONPATH set in your host
machine, this might interfere with Python in container.

Usage example 1: Running Busco

#download and build image
singularity pull busco.sif docker://ezlabgva/busco:v5.2.2_cv1

#run busco
./busco.sif busco -i myGenome.fasta -m genome -o results

Using Singularity

#download image
docker1 pull ezlabgva/busco:v5.2.2_cv1

#run busco
docker1 run --rm ezlabgva/busco:v5.2.2_cv1 busco -i
/workdir/myGenome.fasta -m genome -o /workdir/results

docker1 claim /workdir/$USER/results

Using Docker

Usage example 2: Run R4.1.1

#download and build image
singularity pull R4_1.sif docker://rocker/r-ver:4.1.1
Start container and R-shell
./R4_1.sif
Install R packages into your home directory
install.packages ("BiocManager")

* Without parameter “--no-
home” , R can use all packages
installed in your home directory.

Singularity

Docker

#download image, start container and R-shell in one step
docker1 run --rm -it rocker/r-ver:4.1.1

Install R packages into root home directory inside container
install.packages ("BiocManager")

Docker: Isolated container network. Port
forwarding is required for network services.

8787
8009

Port
forwarding http://cbsumm10.biohpc.cornell.edu:8009

Port forwarding with Docker
docker1 run -d -p 8009:8787 ubuntu

Singularity: No network isolation. No port
forwarding by default.

Network port

NVIDIA GPU access

Docker

• NVIDIA Container Toolkit allows
users to build and run GPU
accelerated Docker containers.

• The “nvidia_docker” is installed
on all BioHPC GPU machines,
and docker1 points to
nvidia_docker.

Singularity

Natively supported. But you do
need the “--nv” option to enable
NVIDIA GPU in container

singularity shell --nv

In summary

Docker
• Almost fully isolated by default.

• But you can optionally open the doors.
For example:
• -v: mount directories;
• -p: forwarding ports;
• As you run as root, you can add user IDs from

host;

Singularity
• Isolated but with a few doors open by

default
• Home directory and current directory are

mounted;
• Host environment variables are inherited;
• User ID inherited;
• No network isolation;

• You can optionally close all the doors.
For example:

• --cleanenv: environment variable not
inherited;

• --no-home: home directory not mounted;
• Network virtualization

… philosophy of Singularity is Integration over Isolation
…

… The isolation and security allow you to run many
containers simultaneously on a given host …

From the Docker home page:

From the Singularity home page:

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33

