
Linux for Biologists

Robert Bukowski, Qi Sun
Institute of Biotechnology

Bioinformatics Facility
(aka Computational Biology Service Unit - CBSU)

Contact: brc_bioinformatics@cornell.edu

Workshop website: https://biohpc.cornell.edu/ww/1/Default.aspx?wid=138

mailto:brc_bioinformatics@cornell.edu
https://biohpc.cornell.edu/ww/1/Default.aspx?wid=138

Week 1

 What is Linux?

 Logging in to (and out of) a Linux workstation using ssh client

 Terminal window tricks

 Linux directory structure

 Working with files and directories

 Persistent multiple shells

 Graphical applications on Linux

Week 2

 File transfer between a Linux computer and the world

 Running programs (non-biological aspects)

 Very basics of shell scripting

 Harnessing the power of multiple processors

Week 3

 Linux in action: processing of large text files common in bioinformatics

Topics

Hardware: CPUs, memory, disk storage, other peripherals

Linux kernel
system call interface (SCI) – used by processes
process scheduling
inter-process communication tools (IPC)
memory management
interface to hardware (drivers)

C standard library (processes communicating with kernel)

Processes

Low-level system components (init, services, logind, networkd, X11,…)

User interface – text (bash)

What is an operating system?

User applications
(bwa, BLAST, Firefox,…)User interface – graphical

Operating System
(OS)

Operating Systems

 Windows

 Mac OS (distant cousin to Linux)

 Android

 iOS

 Linux OS (Linux kernel + GNU software)
 open source
 developed by community (started by Linus Torvalds in 1991)
 500+ various ‘distributions’ (customized software collections working with Linux

kernel with own package management tools)
 RedHat (commercial – pay for support)
 CentOS (free – community RedHat) – that’s what’s installed on BioHPC
 Ubuntu
 Debian
 ….

Why Linux?

Majority of bioinformatics/computational biology software developed only
for Linux

Most programs are command-line (i.e., launched by entering a command in
a terminal window rather than through GUI)

While various graphical and/or web user interfaces exist (e.g., Galaxy,
CyVerse Discovery Environment, BioHPC Web), but often struggle to provide
level of flexibility needed in cutting-edge research

 Versatile scripting and system tools readily available on Linux allow
customization of any analysis, including big data (Week 3)

 Learning Linux is a good investment

Logging in to a Linux machine

What you need:
 network name of the Linux machine (e.g.,

cbsum1c2b007.biohpc.cornell.edu)
 an account, i.e., user ID and password valid on the Linux

machine
 on your laptop: remote access software (typically: ssh

client or VNC client)

 (legal) way to circumvent firewalls likely to be present
between your laptop and the Linux machine you want to
reach

ssh: Secure Shell – provides access to alphanumeric terminal
VNC: Virtual Network Connection - provides access to graphical features (Desktop, GUIs,
File Manager, Firefox, …)

Network obstructions: how to reach workshop
machines in BioHPC Cloud

• Be on Cornell campus in Ithaca and physically connect laptop to
campus network

• If off-campus, install and launch Cornell VPN (Virtual Private Network)
connection on laptop

• have to have Cornell NetID - for eligibility and instructions check
https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid

• info about Cornell VPN: https://it.cornell.edu/cuvpn

• If off-campus and no NetID: connection still possible – more about it
later…

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid
https://it.cornell.edu/cuvpn

• Install PuTTY – open source SSH package for Windows

• Start PuTTY (double-click)

• Type fully qualified server name
you want to connect to, e.g.
cbsu1c2b007.biohpc.cornell.edu

• Click “Open”

SSH - Windows

• You can open several terminal windows, if needed
(i.e., log in several times)

SSH - Windows

Password won’t
show up when typed

Click for many useful options, e.g.,
‘Duplicate Session’

Use native ssh client (already there - no need to install anything)

 Launch the Mac’s terminal window and type

ssh -Y bukowski@cbsum1c2b007.biohpc.cornell.edu

(replace the cbsum1c2b007 with your reserved workstation, and “bukowski” with
your own user ID). Enter the password when prompted.

 When connecting for the first time, a message will appear about “caching server hostkey” –
answer “Yes”. The message will not appear next time around

 while you are typing your password, the terminal will appear frozen – this is on purpose!

 -Y is optional – it enables X11 forwarding –important if you intend to run graphical applications

 You may open several terminal windows, if needed, and log in to the workstation
from each of them.

Logging in via ssh from Mac (or other Linux box)

Off-campus and no VPN

1. ssh from your laptop to cbsulogin.biohpc.cornell.edu,
cbsulogin2.biohpc.cornell.edu, or
cbsulogin3.biohpc.cornell.edu

2. From the terminal you just opened on cbsulogin (or
cbsulogin2 or cbsulogin3), ssh to your reserved BioHPC
machine using the Linux/Mac procedure, e.g.,

ssh userID@cbsum1c2b007.biohpc.cornell.edu

ssh cbsum1c2b007

or just

SSH – connect from outside without VPN
(Mac/Linux version)

ssh access to BioHPC: summary

MAC: ssh -Y userID@cbsuXX.biohpc.cornell.edu

PC: PuTTy to cbsuXX.biohpc.cornell.edu

cbsuXX

cbsuXX

cbsuXX

MAC: ssh -Y userID@cbsuXX.biohpc.cornell.edu

PC: PuTTy to cbsuXX.biohpc.cornell.edu
with
VPN

ssh cbsuXX

cbsulogin or
cbsulogin2 or
cbsulogin3

MAC: ssh userID@cbsulogin.biohpc.cornell.edu

PC: PuTTy to cbsulogin.biohpc.cornell.edu

Outside of Ithaca campus, no VNP

Outside of Ithaca campus, with VPN (Cornell NetID required)

On Ithaca campus, with NetID

Logging out of an ssh session

While in terminal window, type exit or Ctrl-d - this will close
the current terminal window

• If logged in via cbsulogin – need to hit Ctrl-d twice: first
- to exit your machine (e.g., cbsum1c2b007), and
second – to exit cbsulogin

Linux is a multi-access, multi-tasking system: multiple users
may be logged in and run multiple tasks on one machine at the
same time, sharing resources (CPUs, memory, disk space)

 This is what is happening during this workshop

 After workshop: when using BioHPC machines for real
work, you reserve it all for yourself. You can chose to
allow a few other users (collaborators) or not

 BioHPC reservation system is not a part of Linux – it is an
add-on we created to better manage access of multiple
users to multiple machines

One machine, multiple users

How to access BioHPC machines in the
future (after workshop)

Slides from workshop “Introduction to BioHPC”

http://biohpc.cornell.edu/lab/userguide.aspx

BioHPC User’s Guide

https://biohpc.cornell.edu/lab/doc/Introduction_to_BioHPC_v9.pdf

http://cbsu.tc.cornell.edu/lab/userguide.aspx
https://biohpc.cornell.edu/lab/doc/Introduction_to_BioHPC_v9.pdf

Interacting with Linux in terminal window

 User communicates with Linux machine via commands typed
in the terminal window
 Commands are interpreted by a program referred to as shell – an

interface between Linux and the user. We will be using the shell called
bash (another popular shell is tcsh).

 Typically, each command is typed in one line and “entered” by hitting
the Enter key on the keyboard.

 Commands deal with files and processes, e.g.,
 request information (e.g., list user’s files)

 launch a simple task (e.g., rename a file)

 start an application (e.g., Firefox web browser, BWA aligner, IGV viewer, …)

 stop an application

 In this part of the workshop we’ll learn mostly about file management
commands

Try a few simple commands:

List files and directories (more about it in a minute):

ls

ls –al

What kind of machine am I on (name, operating system, kernel version, etc.)?

uname –a

Where on disk am I now (i.e., Print Working Directory)?

pwd

Who else is logged in? For how long?

w

who

Use Manual Pages to learn more about each command – see all possible command
options

man ls man uname

Useful tricks
(may not work on all ssh or VNC clients…)

 Helpful tricks to avoid excessive command typing

 Use copy/paste. Any text “mouse-selected” while holding the left mouse
button is copied to clipboard. It may then be pasted, e.g., into a command, by
clicking the right mouse button (PuTTy) or the middle button (when working
through the console in 625 Rhodes).

 Use Up/Down arrow keys – this will cycle through recently executed
commands.

 Use the TAB key – this will often present you with a list of choices after typing
a part of a command – no need to remember everything.

Useful tricks
 Helpful tricks to avoid excessive command typing

history command: list all recently used commands – can copy a desired
command and paste it to execute again, or refer to a command by its index

Examples:

history

(list all remembered commands)

history | less

(list all remembered commands page by page)

history | grep workdir

(list all remembered commands containing string “workdir”)

These files are text files and can be looked at with any text processing tool (more
about it later)

less OUTERR.log page through the file (use more to page forward)

cat OUTERR.log print the file on screen
nano OUTERR.log open file in text editor

Screen output from a command may be saved to disk

Each command produces two output streams: standard output (STDOUT) and
standard error (STDERR). Normally, they both are displayed on the screen.

But they can be saved on disk (“redirected”)

Save to separate files (file names are arbitrary) …

who > OUT.log 2> ERR.log

… or save to a single file

who >& OUTERR.log

Files and directory tree

Files and directory tree

Data and programs are stored in files on disk storage

Each file has a name and is located in a directory (a.k.a. folder)

directory – a logical location on disk

(directory, name) pair uniquely specifies the file

a directory may hold files and/or other directories
directories form tree structure

How to refer to a file?

Full path (starts with /): /home/hiro/scripts/nam-shub.enki

Relative path (to /home/hiro) scripts/nam-shub.enki

Relative path (to /home/hiro/scripts) nam-shub.enki

Relative path (to /home/enzo) ../hiro/scripts/nam-shub.enki

Example of directory tree

‘current directory’

pwd command will show what it is
relative paths will be assumed relative to it
ls command (with no arguments) will show content of it

home directory

typically: /home/userID
user’s private (logical) space on disk storage
becomes ‘current directory’ right after logging in

Traversing directory tree
Right after logging in or opening a terminal window, “you are” in your home directory (e.g., /home/bukowski).

Where am I?

pwd

(print working directory) – show the current directory; any relative path you specify will be relative to this place

Navigating through directories

cd

Change (current) directory; without additional arguments, this command will take you to your home directory

cd /workdir/bukowski/indexes

Change (current) directory from wherever to /workdir/bukowski/indexes.

cd indexes

Change (current) directory to indexes (will work if the current directory contains “indexes”)

cd ../

Change (current) directory one level back (closer to the root)

cd ../../../

Change (current) directory three levels back (closer to the root)

cd ./

Change (current) directory to the same one (i.e., do nothing). Note: ./ or just . refers to the current directory.

Working with Directories

Creating directories

mkdir /home/bukowski/my_new_dir

Make a new directory called “my_new_dir” in /home/bukowski

mkdir my_new_dir

Make a new directory called “my_new_dir” in the current directory

Removing directories

rmdir /home/bukowski/my_new_dir

Remove directory called “my_new_dir” in /home/bukowski – will fail if the directory is not empty

rm –Rf /home/bukowski/my_new_dir

Remove directory called “my_new_dir” in /home/bukowski with all its content (i.e. all files and
subdirectories will be gone)

rm –Rf my_new_dir

Remove directory called “my_new_dir” in current directory with all its content (i.e. all files and
subdirectories will be gone)

Listing content (files and subdirectories)
of a directory

ls
(list)

ls
List files and directories in current directory (in short) format

ls –al
List all files and directories in current directory in long format

ls –al /home/bukowski/tst
List content of /home/bukowski/tst (which does not have to be the current directory)

ls –alt *.txt
Lists all files and directories with names ending with “.txt” in the current directory, sorted according to
modification time (use ls –altr to sort in reverse)

ls –alS
Lists content of the current directory sorted according to size (use ls –alSr to sort in reverse)

ls –al | less
Lists content of the current directory using pagination – useful if the file list is long (SPACE bar will take you to
the next page, “q” will exit)

LOTS more options for ls – try man ls to see them all (may be intimidating).

pipe
Output from first
command is “piped”
as input to the
second

Listing content of a directory

File
permissions
(“d” means
this is a
directory)

Owner and
group

Size (in bytes) –
meaningful for
files, but not
directories

Last modification time

File name (directories in blue,
executable files in green)

ls -al

Linux directory structure is continuous, i.e. regardless of the
physical location of storage, logically it all appears as part of
single directory tree starting from root (/).

But differents parts of the tree may have different physical
locations (local or network)

affects storage access speed

Not easy to tell which storage is local and which network just by
directory name. Remember the setup on BioHPC machines:

Storage

• Networked storage

/home

/shared_data

/programs

• Local storage
/workdir
/SSD
/local_data

Will look different on other machines or centers – always check description!

/workdir
/SSD
…

/home
/programs
/shared_data

/home
/programs
/shared_data

/workdir
/SSD
…

/home
/programs
/shared_data

/workdir
/SSD
…

/disk/home

/disk/programs

/disk/shared_data

File server

Network

Local file
systems

(fast, few
users,

temporary)

Storage organization at BioHPC

Network file
systems

(slow, many
users,

permanent)

Never process files located in
network directories!

Instead:

Copy files to /workdir or
/SSD and process them there.
When finished, copy results back
to /home/yourID

1 – 12 TB

1.5 PB

df command…

… tells how much disk space is available on various file systems:

df -h

local
/workdir,
/local_data

networked
/home
/programs
/shared_data

These are network devices – starting with
“computername:/”

Checking my disk space

How much disk space is taken by my files?

du –hs .

(displays combined size of all files in the current directory (“.”)
and recursively in all its subdirectories)

du –h --max-depth=1 .

(as above, but sizes of each subdirectory are also displayed)

May take some time if you have a lot of small files

There are many types of files. Here are the most important:

 Text files (human-readable; can be viewed and modified using a text
editor)

• Text documents (e.g., README files)

• Data in text format (e.g., FASTA, FASTQ, VCF, …)

• Scripts:
• Shell scripts (usually *.sh or *.csh)
• Perl scripts (usually *.pl)
• Python scripts (usually *.py)
• …

Working with files

 Binary files (not human-readable; cannot be viewed using a text editor)

• Executables (e.g., samtools, bwa, bowtie, firefox)

• Data in binary format (e.g, BAM files, index files for BWA or Bowtie,
formatted BLAST databases)

• Compressed files (usually *.gz, *.zip, *.bz2,…, but extensions
not necessary) – often text files re-formatted to save space on disk or
packaged directory trees

Working with files

There are many types of files. Here are the most important:

 Symbolic links: pointers to other files or directories.

cd /programs/bin/samtools

ls –al samtools

lrwxrwxrwx 1 root root 30 Apr 16 2013 samtools -> ../../samtools-1.2/samtools

Working with files

In the example above, file /programs/bin/samtools/samtools is a
symbolic link to /programs/samtools-1.2/samtools.

Note the “l” character in the first column of output from “ls –al”.

Working with files

Where do files come from?

They are created by various programs, e.g.,
• Text editors
• File compression tools
• Aligners
• Assemblers
• …
• System commands (copy, move, rename, etc.)
• Screen output redirection (>, >&)
• Remote copy tools (scp, sftp, wget, Firefox)

Creating an empty file (zero size):

touch my_file

my_file is empty (so one can’t say if it is a text file or binary file…)

Working with files
File and directory names – best practices

 Names are case-sensitive (MyFile, myfile, myFile are all different!)

 Use only letters (upper- and lower-case), numbers from 0 to 9, a dot (.), an
underscore (_), a dash (-) [good example: This_is-myFile99.abc]

 Avoid other characters, as they may have special meaning to either Linux, or
to the application you are trying to run. Do not use “space” or other special
characters [bad example: This is my&File#^99.abc]

 Use of special characters in file names is possible if absolutely necessary, but
will lead to problems if done incorrectly.

 “Extensions” (like .zip, .gz, .ps, .sam, .bam, .fastq., .fa, .gff…) are
commonly used to denote the type of file, but are typically not necessary to
“open” or use a file. While working in command line terminal you always
explicitly specify a program which is supposed to work with (open) this file.

Basic operations on files - summary

Listing
ls

ls –al

Copying

cp <path_to_source> <path_to_destination>

Moving and/or renaming

mv <path_to_source> <path_to_destination>

Deleting

rm <path_to_file>

Deleting whole directory with all its content

rm –Rf <path_to_directory>

Working with files
Copying a file

cp <source_file> <destination_file>

Examples:

cp sample_data.fa /workdir/bukowski/sample.fa

(copy file sample_data.fa from the current directory to /workdir/bukowski and give the copy
a name sample.fa; destination directory must exist)

cp /workdir/bukowski/my_script.sh .

(copy file myscript.sh from /workdir/bukowski to the current directory under the same file
name)

cp /home/bukowski/*.fastq /workdir/bukowski

(copy all files with file names ending with “.fastq” from /home/bukowski to
/workdir/bukowski; destination directory must exist)

cp –R /workdir/bukowski/tst5 /home/bukowski

(if tst5 is a directory, it will be copied with all its files and subdirectories to directory
/home/bukowski/tst5; if /home/bukowski/tst5 did not exist, it will be created).

Try man cp for all options to the cp command.

Working with files

Moving and renaming files

mv <source_file> <destination_file>

Examples:

mv my_file_one my_file_two

(change the name of the file my_file_one in the current directory)

mv my_file_one /workdir/bukowski

(move the file my_file_one from the current directory to /workdir/bukowski without changing
file name; the file will be removed from the current directory)

mv /workdir/bukowski/my_file_two ./my_file_three

(move the file my_file_two from /workdir/bukowski to the current directory changing the name
to my_file_three; the file will be removed from /workdir/bukowski)

Try man mv for all options to the mv command….

Working with files

Removing (deleting) files

rm <file_name>

Examples:

rm my_file_one

(delete file my_file_one from the current directory)

rm /workdir/bukowski/my_file_two

(delete file my_file_two from directory /workdir/bukowski)

rm –Rf ./tst5

(if tst5 is a subdirectory in the current directory, it will be removed with all its files and
directories)

Try man rm for all options to the rm command….

Since there are no strict naming conventions for various file types, it is not always
clear what kind of file we deal with. When in doubt, try the file command:

cd /programs/samtools-0.1.11

file samtools

samtools: ELF 64-bit LSB executable, AMD x86-64, version 1

(SYSV), for GNU/Linux 2.6.9, dynamically linked (uses shared

libs), for GNU/Linux 2.6.9, not stripped

Working with files

this is an executable
program….

… which uses “shared”
libraries”, i.e., may not
work if moved to
other machine where
these libraries are
absent

What kind of file is this?

Working with files

Looking for a file

find . –name PHG47_sorted.bam –print

(look for all files called PHG47_sorted.bam in the current directory and recursively
in all its subdirectories)

find /data1 –name “*PHG47*” –print

(look for all files having “PHG47” in the name, located in /data1 or recursively in its
subdirectories)

Try man find for many more options

Working with files: archiving and compression
To save disk space, we can compress large files if we do not intend to use them for a
while. Files downloaded from the web are typically compressed and sometimes need
to be uncompressed before processing can take place.

Common compressed formats and compression/decompression tools:

Format
(extension)

Tool Function

gz gzip Compress a single file

bz2 bzip2 Compress a single file

zip zip Make compressed archive (single file) of a directory
structure; same as on Windows

tar tar Make an archive (single file) of a directory structure

tgz (tar.gz) tar Make a compressed archive (single file) of a directory
structure

Getting help about compression tools:
• gzip -h, bzip2 --help, zip, tar --help

• man gzip, man bzip2, man zip, man tar (may be intimidating…)

Compression works best (i.e., saves most disk space) for text files (e.g., large
FASTQ files).

File compression: examples

• gzip (gz)

gzip my_file

(compresses file my_file, producing its compressed version, my_file.gz)

gzip –d my_file.gz

(decompress my_file.gz, producing its original version my_file)

• bzip2

bzip2 my_file

(compresses file my_file, producing its compressed version, my_file.bz2)

bunzip2 my_file.bz2

(decompress my_file.bz2, producing its original version my_file)

Archiving and compression: examples

• zip
zip my_file.zip my_file1 my_file2 my_file3

(create a compressed archive called my_files.zip, containing three files:
my_file1, my_file2, my_file3)

zip -r my_file.zip my_file1 my_dir

(if my_dir is a directory, create an archive my_file.zip containing the file
my_file1 and the directory my_dir with all its content)

zip –l my_file.zip

(list contents of the zip archive my_file.zip)

unzip my_files.zip

(decompress the archive into the constituent files and directories

Archiving with tar: examples

• tar

tar -cvf my_file.tar my_file1 my_file2 my_dir

(create a compressed archive called my_files.tar, containing files my_file1,
my_file2 and the directory my_dir with all its content)

tar –tvf my_file.tar

(list contents of the tar archive my_file.tar)

tar -xvf my_files.tar

(decompress the archive into the constituent files and directories)

Archiving and compression with tar: examples

• tgz (also, tar.gz – essentially a combo of “tar” and “gzip”)

tar -czvf my_file.tgz my_file1 my_file2 my_dir

(create a compressed archive called my_files.tgz, containing files my_file1,
my_file2 and the directory my_dir with all its content)

tar –tzvf my_file.tgz

(list contents of the tar archive my_file.tar)

tar -xzvf my_files.tgz

(decompress the archive into the constituent files and directories)

Function tool

Text editing vi, nano, gedit, …

Page through the file less, more

Select lines from top, bottom,
or middle of file

head, tail

Select lines containing a string grep

Select columns cut

Append rows to a file cat

Append columns to a file paste

Sort a file over column(s) sort

Count lines, words, characters wc

Advanced, text-focused
scripting tools

awk, sed

General scripting tools (not
only in Linux)

perl, python

Working with text files

Linux features standard tools for text file processing:

Working with text files: editors

vim
• Available on all UNIX-like systems (Linux included), i.e., also on BioHPC workstations

(type vi or vi file_name)
• Free Windows implementation available (once you learn vi, you can just use one editor

everywhere)
• Runs locally on Linux machine (no network transfers)
• User interface rather peculiar (no nice buttons to click, need to remember quite a few

keyboard commands instead)
• Some love it, some hate it

nano
• Available on most Linux machines (our workstations included; type nano or nano

file_name)
• Intuitive user interface. Keyboard commands-driven, but help always displayed on

bottom bar (unlike in vi).
• Runs locally on Linux machine (no network transfers during editing)

gedit (installed on BioHPC workstations; just type gedit or gedit file_name to invoke)

• X-windows application – need to have X-manager running on client PC.
• May be slow on slow networks…

vi basics
Opening a file:

vi my_reads.fastq (open the file my_reads.fastq in the current directory for editing; if the file does not exist, it will be created)

Command mode: typing will issue commands to the editor (rather than change text itself)

Edit mode: typing will enter/change text in the document

<Esc> exit edit mode and enter command mode (this is the most important key – use it whenever you are lost)

The following commands will take you to edit mode:

i enter insert mode

r single replace

R multiple replace

a move one character right and enter insert mode

o start a new line under current line

O start a new line above the current line

The following commands operate in command mode (hit <Esc> before using them)

x delete one character at cursor position

dd delete the current line

G go to end of file

1G go to beginning of file

154G go to line 154

$ go to end of line

1 go to beginning of line

:q! exit without saving

:w save (but not exit)

:wq! save and exit

Arrow keys: move cursor around (in both modes)

NOTE: Text files prepared using advanced text processors (e.g., MS
Word) will cause problems when used as input to Linux applications.

If you have to use such files on Linux – always save as “Plain Text”

Working with text files

Controlling file access: user groups in Linux

 On a Linux system, users may be organized in groups

 Be default, a group is created for each user (with group name the same as user ID)

 Example: a group bukowski is created along with user bukowski

 Other users may belong to a given user’s group

 Example: user jarekp may belong to group bukowski

 Other groups may be also defined (not named after any user IDs) and contain

multiple users

 A user may belong to multiple (up to 15) groups (one of them is primary)

 Groups are set up by an administrator

 User’s membership in groups determine this user’s access to files

 Each file and directory has an owner and a group, each with separate set of

access permissions, and another set of permissions for everybody else

File permissions

data:
 is a directory (“d” in the first column)
 everybody can read and “cd” to it, but not write (“r-x” in the last three columns)
 owner (as2847) and everybody in the group (ak735_0001) can also write to it
am2472:
 is a file readable by everybody and writable by owner and his group
 the file is not executable by anyone
rb565:
 is a directory accessible only by owner

d r w x r w x r w x: User (owner), Group, Others

“d”: directory (or “-” if file); “r”: read permission; “w”: write permission; “x”: execute
permission (or permission to “cd” if it is a directory); “-”: no permission

Examples:

Changing file permissions

chmod command – some examples

chmod o-rwx /home/bukowski

make my home directory inaccessible to others (“o”)

chmod ug+x my_script.pl

make the file my_script.pl (in the current directory) executable by the owner (“u”) and the
members of the group (“g”).

chmod a-w /workdir/bukowski/my_file

deny all (“a”), including the owner, the right to write to the file my_file (in
/workdir/bukowski)

Try man chmod for more information (may be somewhat intimidating!)

Want to make your files accessible to some (but not all) other users? Contact us!
 we would need to make sure that you and those other users are in the

same user groups

Multiple shells and graphics

Running multiple shells at the same time

 Start a few separate ssh sessions (e.g., can use “Duplicate session” function in
PuTTy)

• Separate window for each shell

 screen: a program which allows running multiple shells within one “screen
session” in a single terminal window

• All shells run in a single window (which can be divided, but not too
convenient)

• can switch between the shells with a few keystrokes
• can detach the whole screen session (with all shells running) and re-attach

it later
• Screen session survives connection/laptop crashes – perfect way of keeping

long jobs running

Using screen

cbsu1 ~$ screenLog in through ssh and
launch screen

Linux shell (ssh session)

screen session

cbsu1 ~$ cd /dir1

shell 1 (Ctrl-d to close)

cbsu1 ~$ blastn

shell 2 (Ctrl-d to close)

cbsu1 ~$ ls -al

shell 3 (Ctrl-d to close)

Ctrl-a c

Ctrl-a c

Ctrl-a c creates a new shell within the screen session

Ctrl-a p and Ctrl-a n switch back-and-forth between the shells

Can do different things in each shell, in different directories, etc.

Ctrl-d closes the current shell (i.e., the one currently displayed); others remain active

Using screen

cbsu1 ~$ screen

Linux shell (ssh session)

screen session

cbsu1 ~$ cd /dir1

shell 1 (Ctrl-d to close)

cbsu1 ~$ blastn

shell 2 (Ctrl-d to close)

cbsu1 ~$ ls –al

shell 3 (Ctrl-d to close)

Disconnected screen session keeps running on its own, with everything within it.

Ctrl-a d
or

Network problem
or

Laptop crash

Detach screen session

Using screen

cbsu1 ~$ screen –d -r

Linux shell (ssh session)

screen session

cbsu1 ~$ cd /dir1

shell 1 (Ctrl-d to close)

cbsu1 ~$ blastn

shell 2 (Ctrl-d to close)

cbsu1 ~$ ls –al

shell 3 (Ctrl-d to close)

Re-attach the screen session using screen –d –r

Prior to re-attaching, verify the session is running: screen –list

Will see all shells as we left them, and progress of any programs we left running

While logged in
through ssh….

…re-attach the screen session

screen: running multiple shells in one window
After logging in, type screen

Screen command What it does

screen -S ABC Start a new session named ABC (‘-S ABC’ optional)

screen -list List all your screen sessions

screen -d -r
screen -d -r [sessionID]

Re-attach previously detached (or unintentionally disconnected) session –
can be done upon next login

Ctrl-a c Create a new shell in a session; can be repeated multiple times

Ctrl-a n Ctrl-a p Ctrl-a N Switch to next (n), previous (p), or N-th shell within a session

Ctrl-a “ List all shells in a session, switch to one (arrows, ENTER)

Ctrl-a S Ctrl-a | Split window horizontally (S) or vertically (|), then ‘Ctrl-a TAB’ to jump to
new split and ‘Ctrl-a c’, ‘Ctrl-a n’, ‘Ctrl-a p’, or ‘Ctrl-a N’ to create or import a
shell to it; this will show 2 or more shells in one window

Ctrl-a TAB Jump between shells in a split window

Ctrl-a X Ctrl-a Q Remove current shell (X), or all shells except current (Q) from split window;
removed shells will keep running (use Ctrl-a N, Ctrl-a n, or Ctrl-a p to access)

Ctrl-a d Detach a session (all shells will continue running)

Ctrl-d Exit form current shell (or from whole session, if in last shell)

screen -X -S [name] quit Kill session “name” (obtained from screen -list)

For more features/functionality – type screen –h or Ctrl-a ? (within session)
Sessions are persistent – will survive connection problems, turning off laptop, etc.

Most useful screen commands:

In short, there are two options:

• Log in through ssh with X11 forwarding (check option in PuTTy, or ssh –Y on a
Mac). The laptop must be running an X-windows manager. Start GUI application in
ssh terminal, and the GUI window will appear on your laptop screen. Individual GUI
windows are rendered this way.

• Log in to a Linux graphical mode using VNC (Virtual Network Computing)
• Start a VNC server on Linux machine (typically installed by default)
• Download and start a VNC client on your laptop, connect to VNC server on

Linux machine
• Your laptop will display whole Linux graphical desktop (similar to a Windows or

Mac desktop)
• VNC session is persistent, just like ‘screen’ session

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

Graphics on Linux workstations

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

Logging in to a Linux workstation
(GUI)

You need software client to connect to your machine via VNC.
We recommend RealVNC VNC Viewer for all platforms.

Logging in to a Linux workstation via VNC client
(GUI)

In web browser, navigate to http://biohpc.cornell.edu/, log in (if not yet logged in), click on User:your_id, select tab My
Reservations

Click “Connect VNC”, to initialize VNC
connection, or “Reset VNC” re-initialize
existing connection

Select resolution you
want

http://cbsu.tc.cornell.edu/

Logging in to a Linux workstation
(GUI)

VNC: starting the client and logging in

Right-click anywhere within blue desktop, select Open Terminal …. or
…. click Applications -> Accessories -> Terminal

VNC: logged in

VNC: two ways to exit Kill window, but session keeps
running – can re-connect later

Log out and kill whole session

• Enable your VNC connection first (see slide 82)

• Open local terminal window on your Mac or Linux computer

• Use the following command to connect to BioHPC. You can replace
cbsulogin with cbsulogin2 or cbsulogin3, cbsuxxx with your server name,
5901 with your port no and biohpcid with your BioHPC userid.

ssh -N -L 5901:cbsuxxx:5901 biohpcid@cbsulogin.biohpc.cornell.edu

• Now you can connect to your VNC by typing localhost:5901 in your VNC
Viewer software.

Connecting with VNC form external network without VPN
Mac and Linux

• Enable your VNC connection first (see slide 82). Note what is your VNC
port.

• Open your PuTTY and fill out
cbsulogin.biohpc.cornell.edu
(or cbsulogin2 or cbsulogin3)
as target server.

• On the left panel scroll down to
Connection -> SSH -> Tunnels

Connecting with VNC form external network without VPN
Windows

Enable your VNC connection first (see slide 82). Note what is your VNC port. Type
the port as shown below with the destinations server name and click Add. Now you
can connect to your VNC by typing localhost:5901 in your VNC Viewer software.

Connecting with VNC form external network without VPN
Windows

VNC sessions are persistent (similar to screen)

They run even when the client is disconnected

If you need to reset the session you need to use
“Reset VNC” link

Equivalent to Windows Remote Desktop

VNC: summary

File transfer

File Transfer: overview

web
Another Linux or Mac machine

(call it cbsuss04)

Linux workstation
e.g., cbsuwrkst2

Mac Windows PC

Web browser
(e.g., Firefox)

Graphical client
Command line

Graphical client

SFTP: secure file
transfer protocol
(SSH-based)

SCP: secure copy
protocol
(SSH-based)

Graphical client
Command line

Graphical client
Command line

wget

command

File transfer: (some) graphical clients

Client Windows Mac Linux

FileZilla x x x

WinScp x

Cyberduck x x

CuteFTP x x

Transmit x

Free FTP x

• All clients feature
• File explorer-like graphical interface to files on both the PC and on the Linux machine
• Drag-and-drop functionality

• When connecting to a Linux machine from a client, use the sftp protocol (or port 22). You
will be asked for your user name and password (the same you use to log in to the BioHPC
workstations).

• Transfer text file in text mode, binary files in binary mode (the default “Auto” should be
right, but…).

recommended

Files transferred to Linux machine from a Windows or Mac machine often have
line endings incompatible with Linux (depends on transfer software used and its
settings)

To fix line endings, use dos2unix command

dos2unix my_file mac2unix my_file

(the file my_file will have linux line endings)

dos2unix –n my_file my_file_converted

mac2unix –n my_file my_file_converted

(the file my_file_converted will have linux line endings, the original file
my_file will be kept)

Fixing line ending problems

FileZilla window

22

While logged in on the local machine, execute:

cd /data/reads

scp my_sequence.fa bukowski@cbsuwrkst2.biohpc.cornell.edu:/workdir/files

To copy in the opposite direction:

scp bukowski@cbsuwrkst2.biohpc.cornell.edu:/workdir/files/my_sequence.fa

.

File transfer: command-line scp
Linux <-> Linux, Mac <-> Linux

NOTES:
• scp is a generalization of cp, where the source or the target file is on a remote

machine
• Most cp options work with scp (scp –r will recursively copy whole directory)
• The remote machine must accept connection requests (depends on network config)

Objective: copy a file /data/reads/my_sequence.fa from the local Linux or Mac machine
to directory /workdir/files on a remote Linux machine called
cbsuwrkst2.biohpc.cornell.edu

File transfer: from the web to Linux

Option 1: use a web browser (such as Firefox)

• Connect to Linux machine in graphical mode (VNC)

• Start Firefox (in terminal window, type firefox, or click on web browser icon)
• Note: the web browser is running on Linux machine, not on your laptop!

• Navigate to desired site and download the file (will ask for directory in which to deposit
the file)

Let’s try to download the following file:

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

File transfer: from the web to Linux

Option 2: run wget command on the workstation (if you know the URL of the file)

• Example 1: simple URL

wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

(will download the file BLOSUM100 from the NCBI FTP site and deposit it in the current directory under
the name BLOSUM100)

• Example 2: complicated URL

wget -O e_coli_1000_1.fq
“http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?cntrl=646698859&laneid=487&mode=http&file=e_coli_1000_1.fq”

(whole command should be on one line; note the “” marks around the link and the –O option which
specifies the name you want to give the downloaded file)

Example 3: Downloading Illumina sequencing results

Fragment of a notification e-mail from Cornell Genomics Facility:

File transfer: from the web to Linux

Sample: P_Teo_10_b
File: 6581_7527_30809_C877GANXX_P_Teo_10_b_R1.fastq.gz
Size 18570118164 bytes, MD5: 118c0c974a6c4dd81895c26cdd4208e6
Link: http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=94863491&refid=93804

Sample: P_Teo_11_b
File: 6582_7527_30810_C877GANXX_P_Teo_11_b_R1.fastq.gz
Size 17854406437 bytes, MD5: 20be4a4305b6a2f3260c461536bbf060
Link: http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244420836&refid=93805

e.t.c.

How to get these files onto a Linux machine?

http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=94863491&refid=93804
http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244420836&refid=93805

How to get the sequencing files onto a Linux machine?

1. Open Firefox (it’s on a Linux machine, so need to be logged in through
VNC) and navigate to each URL – very tedious if the number of files
large

2. Use wget commands (provided in the notification e-mail as
attachment file download.sh)

wget -q -c -O 6581_7527_30809_C877GANXX_P_Teo_10_b_R1.fastq.gz

http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=

94863491&refid=93804

wget -q -c -O 6582_7527_30810_C877GANXX_P_Teo_11_b_R1.fastq.gz

http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=

1244420836&refid=93805

A couple of lines from the attached file download.sh (typically there is more than two
wget commands – may be several hundred!):

Transfer this file to your Linux machine and execute it as shell script:

sh ./download.sh

Transferring large numbers of small files

There is a serious time overhead when handling large number of small files

Example: 1 million files 1 Mbyte each

Network bandwidth 150 MBytes/sec expected transfer time 1.8 hours
actual transfer time: 1-2 days !

Remedy:

Create several tar archives, about 100 GBytes each, each containing a different subset
of original small files, then transfer those tar files, one by one, ‘untar’ at destination

a single big (1 TByte) tar archive would work as well, but more time would be
wasted if transfer is interrupted for any reason and has to be restarted from
the beginning

Running applications

Running applications

 Very much like running system commands

 (Very) general syntax

<path_to_application_executable> <options>

 A few quick examples:

blastall -p blastx -b 1 -d ./databases/swissprot -i seq_tst.fa

samtools flagstat alignments.bam

tophat -p 7 -o B_L1-1 --transcriptome-index ZmB73_5a_WGS \

--no-novel-juncs genome/maize reads_R1.fastq.gz reads_R2.fastq.gz

Running applications

 Why can we call, say, samtools by just typing samtools rather than the full path
(in this case, /programs/bin/samtools/samtools)?

 Because of the search path environment variable which is defined for
everybody. When you type samtools, the system tries each directory on the
search path one by one until it finds the corresponding executable.

 which samtools (tells us where on disk the command bwa is located)

 echo $PATH (displays the search path)

 Note: the current directory ./ is NOT in the search path. If you need to run a
program located, say in your home directory, you need to precede it with ./,
for example, ./my_program

 Note: majority of executables are NOT in search path – they need to be
launched using full path.
 Visit https://biohpc.cornell.edu/lab/labsoftware.aspx to find out the path

to your application

https://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Running applications

 How to run Java applications?

 Java programs usually come packaged in so-called jars

 Java program is launched by running the java virtual machine with the appropriate jar
as an argument

 Example:

java -Xmx6g –jar GenomeAnalysisTK.jar -T UnifiedGenotyper \

–R genome.fa -i aln.bam -o variants.vcf

Launch Java with
6GB of RAM

Run program from
this jar

Program options

 Need to know what program(s) are relevant for your particular problem

 Need to know what a given program does and how to use it

 Visit our software page http://biohpc.cornell.edu/lab/labsoftware.aspx

 Links to manuals (all options explained, examples given, test data
available)

 Specific hints on running in BioHPC environment

 Getting quick help – run command without any options, or sometimes with –h
or -–help

 Should print a list of options with very short descriptions

Running applications

http://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Example: BLAST
Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program

compares nucleotide or protein sequences to sequence databases and calculates

the statistical significance.

blastx
• translate DNA into AA
• find alignments
• compute scores

Input

Set of query sequences
(text file in FASTA format;
we will use 9 human cDNA
sequences)

Output

Database of known
sequences
(multiple binary files;
we will use Swissprot set
of amino acid sequences)

Text file listing regions of
similarity between query
and database sequences
with ‘scores’

Executable

Running applications example: BLAST
prepare input

 Create your local scratch directory (if not yet done) and a sub-directory blast_test
where this exercise will be run

mkdir /workdir/bukowski

cd /workdir/bukowski

mkdir blast_test

cd blast_test

 Copy file with query sequences to the exercise directory:

cp /shared_data/Linux_workshop/seq_tst.fa .

 Copy Swissprot BLAST database (we’ll make a separate directory for it)

mkdir databases

cp /shared_data/Linux_workshop/databases/swissprot* ./databases

 Verify that the files have been copied (use ls command)

File server

cbsum1c2b001 cbsum1c2b002 cbsum1c2b003

/workdir

/programs /shared_data

workstations

/home

/workdir /workdir

Network-attached – slow access

Directly attached – fast access

Local, visible from only
own workstation

Network
directories,
visible from all
workstations

Files frequently read and/or written (like input and output from an application being
run) must be located on local directories (on BioHPC machines: /workdir)

Reminder: local vs. network directories in BioHPC Cloud

 In our specific case (command may be in a single line or split with “\”):

blastx \

-db ./databases/swissprot \

–num_alignments 1 \

-query seq_tst.fa \

-out hits.txt \

>& run.log

 For full set of options, run
blastx -help | less

 Very general syntax for launching applications:

<path_to_application_executable> [options] >& log

executable

Running applications example: BLAST
run the program

path to databases files

alignments to report

query file

output file

redirect rest of STDOUT+STDERR to file on disk

Running applications example: BLAST
running the program

 The program will run for about 1 minute and then write the main
output to the file hits.txt, and he remaining output (STDERR
stream) to run.log
 Often output will appear in hits.txt gradually as a program is

running

 For larger queries, the run will take (much) longer and produce more
output…
 10,000 similar query sequences run using a similar command would

take about 24 hours

blastx -db ./databases/swissprot \

–num_alignments 1 -query seq_tst.fa -out hits.txt >& run.log

Run in the
background

 Running a program in the background

 Normally, the program will run to completion (or crash), blocking the terminal
window

 By putting an “&” at the end of command, we can send the program to the
background

 Terminal prompt will return immediately – you will be able to continue
working

 Good for long-running programs (most programs of interest…)
 Can run multiple programs simultaneously if more then 1 processor

available on a machine (more about it later)
 If all screen output redirected to disk, you may log out and leave the

program running (to make sure, use nohup before the command)

blastx [options] >& run.log &

Running a program, cnt.

Insert options, as previously

nohup blastx [options] >& run.log &

Keep running
after logout

Checking on your application: the top command
To exit – just type q

Running applications

Running applications, cnt.
Checking on your application:
the ps command – display info about all your processes – one of them should be
blastall

Process ID (PID) Running time

ps –ef | grep bukowski

Try man ps for more info about the ps command.

Running applications

 Stopping applications

• If the application is running in the foreground (i.e., without “&”), it
can be stopped with Ctrl-C (press and hold the Ctrl key, then press
the “C” key) issued from the window (terminal) it is running in.

• If the application is running in the background (i.e., with “&”), it
can be stopped with the kill command

kill -9 <PID>

Where <PID> is the process id obtained rom the ps command. For
example, to terminate the blastall process form the previous
slide, we would use

kill -9 18817

Try man kill for more info about the kill command.

Keeping a program running in the background after you log out or
disconnect

Option 1: Use nohup (as on previous slide). Of course, you can use
this also with options 2 and 3.

Option 2: Start a program in a terminal within a VNC session

• the session keeps running after VNC connection is killed
• you can reconnect to VNC session later

Option 3: Start a program within a screen window

• all such windows keep running after you disconnect using
“Ctrl-a d” or by killing terminal window

• you can reconnect to screen session later

Shell scripting

Script download.sh is sent as attachment to notification e-mail from the sequencing
facility

Copy download.sh to your Linux machine and run as a script

Example we already talked about: Downloading Illumina sequencing results

sh ./download.sh

Script for a complex task: SNP-calling
Example: given Illumina reads (in FASTQ format) and reference genome (FASTA), call SNPs

Alignment
(aln.sam)

Index genome
(bwa)

Reference BWA
index files

Align reads to
reference

(bwa)

genome.fa reads.fastq

Convert to
BAM format
(samtools)

Alignment
(aln.bam)

Get genotype lkhds
(samtools,bcftools)

Sorted
alignments
(aln_srt.bam)

Index BAM file
(samtools)

aln_srt.bam.bai

Sort
alignments
(samtools)

Raw genotyping
result
(var.raw.vcf)

SNP filtering
(bcftools)

Final SNPs
(var.flt.vcf)

Scripts: tools for executing complex tasks

Sequence of steps on previous slide is an example of a pipeline

 Each step corresponds to (typically) one instance of a program
or command

 Input files used in a step are (typically) generated in preceding
steps

 Some steps may run quite long (depends on amount of input
data and size of reference)

 Executing each step in a terminal as a command is possible,
but tedious and hard to repeat (for example, with a new input
data)

 Remedy: write a shell script – a text file with commands

Shell script: a set of commands (and comments) in a text file

This is a fragment of
an actual script
implementing the
SNP-calling pipeline.

The whole functional script, along with input files is
available in tarball
/shared_data/Linux_workshop/pipeline_example.tgz

Shell scripts
 First line should be #!/bin/bash (indicates the shell used to interpret the script)

 If absent, default shell will be used (bash)

 Everything in a line following “#” is a comment

 May include system commands (like cp, mv, mkdir, …) and commands launching
programs (blastall, bwa, samtools, …)

 Commands will be executed “in the order of appearance”

 Long lines can be broken with “\” character
 The “\” character must be the last one in a line (no blank spaces after it)

 Script (e.g., my_script.sh, in the current directory) can be run as in the following:

bash ./my_script.sh >& my_script.log &

./my_script.sh >& my_script.log &

 The second command will work if the file my_script.sh is made executable with
the command

chmod u+x my_script.sh

Shell scripts: conditionals and loops

More about scripting

Multiple scripting tools available

• shell (bash, tcsh – good for stitching together shell commands)

• perl (very popular in biology, due to BioPerl module package)

• python (good numerical analysis tools – NumPy, SciPy packages)

• awk (mostly text parsing and processing)

• sed (mostly text parsing and processing)

• R (rich library of numerical analysis and statistical functions)

Using multiple processors

Recommended reading:
Efficient use of CPUs/cores on BioHPC Cloud machines

http://biohpc.cornell.edu/lab/doc/using_BioHPC_CPUs.pdf

http://biohpc.cornell.edu/lab/doc/using_BioHPC_CPUs.pdf

machine

CPU

availa

ble

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 0.931 27.506

cbsulm10 4 64 16 1.962 13.056

cbsulm10 4 64 1 25.619 1.000

cbsumm15 2 24 24 2.058 12.117

cbsumm15 2 24 12 2.593 9.616

cbsumm15 2 24 1 24.930 1.000

cbsum1c2b008 2 8 8 4.193 6.717

cbsum1c2b008 2 8 1 28.161 1.000

machine

CPU

available

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 10.97 2.222

cbsulm10 4 64 16 24.37 1.000

cbsumm15 2 24 24 26.10 2.140

cbsumm15 2 24 12 55.85 1.000

Using BLAST to search swissprot database for matches of 10,000 randomly chosen
human cDNA sequences (swissprot is a good example of a small memory footprint).

Using BLAST to search nr database for matches of 2,000 randomly chosen human cDNA
sequences (nr is a good example of a large memory footprint).

Multiple processors

 It is VERY important to use multiple cores. BLAST on 64 cores takes only 0.931
hours (2K cDNA vs swissprot), the same run on a single core takes over 25 hours!

 Speedup is not directly proportional to the number of cores. Most often it is less
than expected, but still sufficiently large to justify the effort. 64 cores compared
to 1 core in swissprot example give 27.5 speedup rate, much less than 64-fold,
but still large!

 Speedup depends on the machine (hardware), program (algorithm), and
parameters (e.g., nr vs swissport). When using nr database on cbsumm15 the
speedup between 12 and 24 cores is 2.14. For swissprot on the same machine it
is only 1.26.

 It is often a good idea to run a short example first (if possible) on a subset of
data to figure out the optimal number of cores.

Multiple processors

Three ways to utilize multiple CPU cores on a machine:

 Using a given program’s built-in parallelization

 Simultaneously executing several programs in the
background

 Using a “driver” program to execute multiple tasks
in parallel

Multiple processors

 Take advantage of a program’s built-in parallelism invoked with an option
 read documentation to find out if your program has this feature
 Look for keywords like “multithreading”, “parallel execution”, “multiple

processors”, etc.

Multiple processors

A few examples:

blastall -a 8 [other options]

blastx -num_threads 8 [other options]

tophat –p 8 [other options]

cuffdiff –p 8 [other options]

bwa –t 8 [other options]

bowtie –p 8 [other options]

Remember speedup is not
perfect, so optimal number of
threads needs to be optimized
by trial and error using subset of
input data

Multiple processors

blastx –num_threads 2 -db ./databases/swissprot -query seq_tst.fa

 >100% CPU indicates the program is multithreaded
 Multiple threads within a single process rather than multiple processes

Multiple processors

 Simultaneously executing several programs in the background

Example: suppose we have to compress (gzip) several files. We can simply
launch multiple gzip commands in the background, without waiting for
previous ones to finish:

gzip file1 &

gzip file2 &

gzip file3 & Multiple processes
(1 thread in each)

Multiple processors
What if in the previous example, we had, say, 3000 files instead of just 3, but still only a
few processors?

Submitting all 3000 commands simultaneously in the background (in principle, it could be
done painlessly using a script) would not work too well, because:

 Each processor would have to switch between many processes – possible, but inefficient

 With large number (and/or size) of files being processed, access to disk would become a
bottleneck (i.e., processes would spend most of their time competing for access to disk)

 Disk access (referred to as I/O – input/output) is always an issue for programs
which do a lot of reading/writing (like gzip)

 As a result, we would get no speedup, or (more likely) processing of all files in parallel
would take longer than processing them one by one

In situations like this (many short tasks and a few processors), we
need a special “driver” tool to efficiently distribute the tasks.

Multiple processors

 Using a “driver” program to execute multiple tasks in parallel

Example: create a file called (for example) TaskFile
(This is NOT a script, although it could be executed as such…)

….. (up to file3000)

This long file can be created, for example,
using the following shell script:

Multiple processors

/programs/bin/perlscripts/perl_fork_univ.pl TaskFile NP >& log &

Then run the command (assuming the TaskFile and all file* files are in the current dir)

 perl_fork_univ.pl is an CBSU in-house “driver” script (written in perl)

 It will execute tasks listed in TaskFile using up to NP processors
 The first NP tasks will be launched simultaneously
 The (NP+1)th task will be launched right after one of the initial ones completes

and a “slot” becomes available
 The (NP+2)nd task will be launched right after another slot becomes available
 …… etc., until all tasks are distributed

 Only up to NP tasks are running at a time (less at the end)

 All NP processors always kept busy (except near the end of task list) – Load Balancing

where NP is the number of processors to use (e.g., 10)

tophat -p 7 -o B_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7073_C3AR7ACXX_B_L1-1_ATCACG_R1.fastq.gz \

fastq/2284_6063_7073_C3AR7ACXX_B_L1-1_ATCACG_R2.fastq.gz >& B_L1-1.log &

tophat -p 7 -o B_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7076_C3AR7ACXX_B_L1-2_TGACCA_R1.fastq.gz \

fastq/2284_6063_7076_C3AR7ACXX_B_L1-2_TGACCA_R2.fastq.gz >& B_L1-2.log &

tophat -p 7 -o B_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7079_C3AR7ACXX_B_L1-3_CAGATC_R1.fastq.gz \

fastq/2284_6063_7079_C3AR7ACXX_B_L1-3_CAGATC_R2.fastq.gz >& B_L1-3.log &

tophat -p 7 -o L_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7074_C3AR7ACXX_L_L1-1_CGATGT_R1.fastq.gz \

fastq/2284_6063_7074_C3AR7ACXX_L_L1-1_CGATGT_R2.fastq.gz >& L_L1-1.log &

tophat -p 7 -o L_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7077_C3AR7ACXX_L_L1-2_ACAGTG_R1.fastq.gz \

fastq/2284_6063_7077_C3AR7ACXX_L_L1-2_ACAGTG_R2.fastq.gz >& L_L1-2.log &

tophat -p 7 -o L_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7080_C3AR7ACXX_L_L1-3_ACTTGA_R1.fastq.gz \

fastq/2284_6063_7080_C3AR7ACXX_L_L1-3_ACTTGA_R2.fastq.gz >& L_L1-3.log &

tophat -p 7 -o S_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7075_C3AR7ACXX_S_L1-1_TTAGGC_R1.fastq.gz \

fastq/2284_6063_7075_C3AR7ACXX_S_L1-1_TTAGGC_R2.fastq.gz >& S_L1-1.log &

tophat -p 7 -o S_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7078_C3AR7ACXX_S_L1-2_GCCAAT_R1.fastq.gz \

fastq/2284_6063_7078_C3AR7ACXX_S_L1-2_GCCAAT_R2.fastq.gz >& S_L1-2.log &

tophat -p 7 -o S_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7081_C3AR7ACXX_S_L1-3_GATCAG_R1.fastq.gz \

fastq/2284_6063_7081_C3AR7ACXX_S_L1-3_GATCAG_R2.fastq.gz >& S_L1-3.log &

Mixed parallelization: running several simultaneous multi-threaded tasks (each
processing different data) on a large machine (here: 64-core)

Multiple processors

General guidelines

 Do not run more processes/threads than CPU cores available on the machine
 For large number of tasks, use script perl_fork_univ.pl

 Run only as many simultaneous processes as will fit in memory (RAM)
 when in doubt, run a single process first and check its memory requirement (for

example, using top)

 Programs heavy on I/O will compete for disk access if run in parallel – running too
many simultaneously is not a good idea

 If available, use program’s own multithreading options

 Using subset of input data, try to determine number of CPU cores which (for a given
machine, input, and program options) gives the optimal speedup.

Old/Extras

b
o

o
ks

b
e

ac
h

nut1

nut2 nut1

Direct squirrel to nut1 (on the right) using commands:
/ get on the main trunk (referred to as root)
some_name/ from where you are, turn into branch “some_name”
../ return to the previous branch (closer to root)
./ stay where you are

Using these, direction from the ground to nut1 will be:
/home/him/shack/nut1

This is called absolute path (starting from the trunk)

Linux
directory

tree

Branches =
directories

leaves, nuts
= files

b
o

o
ks

b
e

ac
h

nut1

nut2 nut1

Assume squirrel sitting on home rather than on the ground. We could make
him jump to the ground and use the absolute path. Instead, we can simplify:

him/shack/nut1

This is called relative path (starting from where “we are”)

current directiory

b
o

o
ks

b
e

ac
h

nut1

nut2 nut1

Assume squirrel sitting on shack. We could make him jump to the ground and
use the absolute path. Instead, we can simplify:

nut1 or ./nut1

This is called relative path (starting from where “we are”)

current directiory

Assume squirrel sitting on CDs. We could make him jump to the ground and use the absolute
path. Instead, we can simplify:

../../home/him/shack/nut1

Another example of relative path. Could also use, for example,

../../insects/bees/../wasps/../../home/me/../him/shack/nut1

Sounds unnecessarily long, but sometimes useful

b
o

o
ks

b
e

ac
h

nut1

nut2 nut1

current directiory

/

bin/

dev/

etc/

home/

bsw27/

bukowski/

454/

Desktop/

GATK_tst/

bin/

ecoli_tst/

igv/

igv.log

perl_test.txt

programs/

schedfile

tst/

tst5/

eee

genes_expr

ooo

test_tophat.bam

test_tophat.sam

transcripts.expr

transcripts.gtf
ttt.pl

tst_toxedo
/

tst_blat/

jarekp/

ponnala/

qisun/

tw337/

yj55/

lib/

media/

opt/

programs/

shared_data/

tmp/

usr/

var/

workdir/

bukowski/

err

indexes/

ttt.amb

ttt.ann

ttt.bwt

ttt.pac

ttt.rbwt

ttt.Rpac

ttt.rsa

ttt.sa

log

tophat/

ecoli_genome.fa
qisun/

tw337/

directory/

file

Referring to files:
Full path:
/home/bukowski/tst5/transcripts.gtf

Relative path (i.e., relative to
/home/bukowski)
tst5/transcripts.gtf

Relative path (i.e., relative to
/home/bukowski/tst5)
transcripts.gtf

Example of directory tree (more real)

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid

Weill Cornell Medical College faculty and staff can be issued a
NetID if they need access to online services offered on the Ithaca
campus. A NetID may be requested by contacting the IT Service
Desk.

Students at Weill Cornell Medical College are not eligible for
Cornell NetIDs.

Cornell-Ithaca NetID simplifies work – get it if you can!

Excerpt:

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid
https://it.cornell.edu/support

Logging in via ssh from Windows PC
 Install remote access software (PuTTy). For details, consult

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

 Use PuTTy to open a terminal window on the reserved workstation
using ssh protocol
 When connecting for the first time, a window will pop out about “caching server

hostkey” – answer “Yes”. The window will not appear next time around

 while you are typing your password, the terminal will appear frozen – this is on
purpose!

 Adjust colors, if desired (before or after connecting)

 configure X11 forwarding (if you intend to run graphical software)

 Save the configuration under an informative name

 You may open several terminal windows, if needed (in PuTTy – can use
“Duplicate Session” function).

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

Viewing text files

less README.txt

(display the content of the file README.txt in the current directory dividing the file into
pages; press SPACE bar to go to the next page or use up/down arrows)

head -100 my_reads.fastq

(display first 100 lines of the file my_reads.fastq in the current directory)

tail -100 my_reads.fastq

(display last 100 lines of the file my_reads.fastq in the current directory)

tail -1000 my_reads.fastq | less

(extract the last 1000 lines of the file my_reads.fastq and display them page by page)

head -1000 my_reads.fastq | tail -100

(display lines 901 through 1000 of the file my_reads.fastq). Note the “|” character: it pipes
the output from one command as input to another

cat my_reads.fastq cat my_reads.fastq >> reads_all

(print the file on screen) (append a file to the end of another)

wc my_reads.fastq

(display the number of lines, words, and characters in a file)

Working with text files

pipe
Output from first
command is “piped”
as input to the
second

Looking for a string in a text file:

grep “Error: lane” calc.log

(display all lines of the file calc.log in the current directory which contain the
string “Error: lane”)

Looking for a string in a group of text files:

grep “Error: lane” *.out

(display all files *.out in the current directory which contain the string “Error:
lane”; also display the lines containing that string)

Looking for lines which do not contain a string (ignore case)

grep –i –v “some STring” my_file

Look for lines containing “AAA” surrounded by TABs
grep –P “\tAAA\t” my_file

Working with text files

File1

a b c

g h i

d e f

j k l

File2

1 2 3

7 8 9

4 5 6

10 11 12

cut –f 1,3 File1

a c

g i

d f

j l

cut –f 1 –-complement File1

b c

h i

e f

k l

cut –f 1,3 File1 | paste File2 -

paste File1 File2

a b c

g h i

d e f

j k l

1 2 3

7 8 9

4 5 6

10 11 12

a c

g i

d f

j l

1 2 3

7 8 9

4 5 6

10 11 12

TAB-delimited files

“-” means that the second file
is to be read from STDIN
(passed on through pipe “|”)

cut/paste

examples

Let File contain a TAB- or space-delimited table

sort File

(sort File alphabetically over whole rows)

sort –k 2,2 –k 3,3n -k 5,5nr File > new_File

(sort File alphabetically over column 2, then numerically from small to large over
column 3, and then numerically from large to small over column 5; write result to
file new_File)

sort –u File

(sort File keeping only unique rows)

See man sort for lot’s more information

sort command

Files transferred to Linux machine from a Windows or Mac machine often have
line endings incompatible with Linux (depends on transfer software used and its
settings)

To fix line endings, use dos2unix command

dos2unix my_file mac2unix my_file

(the file my_file will have linux line endings)

dos2unix –n my_file my_file_converted

mac2unix –n my_file my_file_converted

(the file my_file_converted will have linux line endings, the original file
my_file will be kept)

Working with text files

VNC: starting VNC server

Please do NOT do it this way on BioHPC
workstations! See next slide for server starting
procedure on BioHPC Lab!

Log in to the machine via ssh client (e.g., PuTTy), then in the terminal window
type:

vncserver

You will be asked to set up a password for your VNC session (it is separate from
your password on the machine). Once this is done, the VNC server will start
running. It will print out the port number (a small integer, typically 1, 2, …) to use
while connecting from the client.

On BioHPC Lab machines, the VNC server is started through
our website.

Running applications example: BLAST

 Input:

 FASTA file with query sequences
 We will use 9 random human cDNA sequences

 Database of known sequences with which the query is to be
compared
 We will use Swissprot set of amino acid sequences

 Need to translate each cDNA query in 6 frames and align to
Swissprot templates

 Output
 Text file describing hits

 Program to run: blastx
Part of the blast+ suite of programs

