Statistical Analysis of RNA-Seq Data

Jeff Glaubitz, Qi Sun

Bioinformatics Facility Cornell University

RNA-Seq Statistics:

- Normalization between samples;
- Differentially Expressed Genes (DE);

Genes	Control	Treated	
Gene A	10	30	
Gene B	30	90	
Gene C	5	15	
Gene D	1	3	
Gene N	80	240	
	126	378	

- Y axis: log ratio of expression level between two conditions;
- With the assumption that most genes are expressed equally, the log ratio should mostly be close to 0

Simple normalization

- **CPM** (Count Per Million Reads)
- Normalized by:
 - Total fragment count;

FPKM (Fragments Per Kilobase Of Exon Per Million Fragments) Normalized by:

- Total fragment count;
- Gene length (kb);

CPM : Not normalized by gene length. Longer genes tend to have higher CPM values than shorter genes. But that is ok, as in RNA-Seq experiments, we do not compare between genes, only compare the same gene between different samples.

Simple normalization could fail

Genes	Control	Treated	
Gene A	10	30	
Gene B	30	90	
Gene C	5	15	
Gene D	1	3	
Gene N	1000	240	
	1046	378	

TMM normalization

(Trimmed mean of M-values)

M = log2(Test/Test_total)-log2(Ref/Ref_total)

A =0.5 *log2(Test/Test_total*Ref/Ref_total)

Effective library size

DESeq2 normalization

1. For each gene, calculate geometric mean

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Geomean
Gene1	34	56	23	12	10	30	23
Gene 2	10	6	7	11	12	8	9
 Gene n	65	78	67	34	56	23	50

2. For each gene, calculate ratio to geometric mean

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Gene1	1.5	2.4	1.0	0.5	0.4	1.3
Gene 2	1.1	0.7	0.8	1.3	1.4	0.9
Gene n	1.3	1.6	1.4	0.7	1.1	0.5

3. Take median of these ratio as sample normalization factor

1.3 1.6 1 0.7 1.1 0.9	
-----------------------	--

Differentially Expressed Genes

Expression level of gene 1

- Control:Treated:Repeat 124Repeat 123Repeat 225Repeat 226
- Repeat 3 27 Repeat 3 <u>102</u>

Question : is this a DE gene?

You might get different answers depending of which software you run.

Available RNA-seq analysis packages for DE

TABLE 2. A summary of the recommendations of this paper

				Tool (# go	recommenc ood replicat condition) ⁶	led for: es per
	Agreement with other tools ^a	WT vs. WT FPR ^b	Fold-change threshold (T) ^c	≤3	<u>≤</u> 12	>12
DESeq	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
DESeq2	Consistent	Pass	0 0.5 2.0	Yes	- Yes Yes	Yes Yes Yes
EBSeq	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
edgeR (exact)	Consistent	Pass	0 0.5 2.0	Yes	- Yes Yes	Yes Yes Yes
Limma	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
cuffdiff	Consistent	Fail				
BaySeq	Inconsistent	Pass				
edgeR (GLM)	Inconsistent	Pass				
DEGSeq	Inconsistent	Fail				
NOISeq	Inconsistent	Fail				
PoissonSeq	Inconsistent	Fail				
SAMSeq	Inconsistent	Fail				

From: Schurch et al. 2016. RNA 22:839-851

Why DESeq2?

- 1. Top method recommended by Schurch *et al.* (2016), along with *EdgeR (exact)*
- 2. Cutting-edge tool widely used and accepted: 11,934 citations (Google Scholar on Oct 25, 2019)
- 3. Documentation (and papers) very thorough and well-written
- 4. The first author (Mike Love) provides amazing support! Most questions that you Google (e.g., <u>support.bioconductor.org</u>) are clearly and definitively answered by the author himself.
- 5. See https://mikelove.wordpress.com/2016/09/28/deseq2-or-edger/
- 6. R functions in *DESeq2* package are intuitive to R users (and modifiable). Defining the experimental design is easy and intuitive, even for complex, multifactor designs:

design= ~ batch + weight + genotype + treatment + genotype:treatment

Too few DE genes

Biological vs. technical replicates

Scenario	Replicate Type
Split tissue sample evenly into 2 RNA preps	Technical
Split RNA sample into two library preps	Technical
Split library across two sequencing flow cells	Technical
RNA prep from different leaves on same plant	Technical/Biological
Different clones of the same genotype in same treatment condition	Biological
Different genotypes in same treatment condition	Biological

Differentially expressed genes

If we could do 100 biological replicates,

Distribution of Expression Level of A Gene

Control samples

Treated samples

The reality is, often we can only afford 3 replicates,

Distribution of Expression Level of A Gene

Control samples

Treated samples

How many biological replicates?

- 3 replicates are the *bare minimum* for publication
- Schurch *et al.* (2016) recommend at least 6 replicates for adequate statistical power to detect DE
- Depends on biology and study objectives
- Trade off with sequencing depth
- Some replicates might have to be removed from the analysis because poor quality (outliers)

Hypothesis tests require accurate statistical model

Gaussian (Normal)

Negative binomial (variance > mean)

Negative binomial best fit for RNA-Seq data

Mean gene expression level (log10 scale)

DESeq2 fits an negative binomial model Controls the variance •**Raw count** for gene *i* in sample *j* ~ NB(mean = μ_{ij} , dispersion =(Normalized count Normalization ("size") factor **Design matrix** -- Control or Treatment? -- Batch (e.g., flow cell or plate) -- Other co-factors (e.g., sex) **GLM coefficients** $\log q_{ii}$ -- One for each Design matrix element = strength of effect -- Overall expression strength of gene Coefficient -- log2 fold change

DESeq2: Empirical Bayes shrinkage of dispersion

- Not enough replicates to estimate variance ("dispersion") for individual genes
- Borrow information from genes of similar expression strength among the replicates
- Genes with very high dispersion left as is (violate model assumptions?)

DESeq2: Empirical Bayes shrinkage of fold change

DESeq2: Empirical Bayes shrinkage of log fold change improves reproducibility

• Large data-set split in half \rightarrow compare log2 fold change estimates for each gene

DESeq2: Statistical test for DE

Test for DE:

- (*shrunkenLFC*) / (*stdErr*) = Z stat
- Z stat follows std. normal dist.
- *p* value for *Z* stat (LFC) obtained from standard normal distribution
- *p* values adjusted for multiple testing using Benjamini and Hochberg (1995) procedure
 - Controls false discovery rate (FDR)

False Discovery Rate

Truth

		Different	Same	Total
Evporimont	Different	TP	FP	R
experiment	Same	FN	TN	m - R
	Total	Р	Ν	m

- m: total number of tests (e.g., genes)
- N: number of true null hypotheses
- **P**: number of true alternate hypotheses
- R: number of rejected null hypotheses ("discoveries")
- **TP**: number of true positives ("true discoveries")
- TN: number of true negatives
- FP: number of false positives ("false discoveries") (Type I error)
- FN: number of false negatives (Type II error)
- FDR = "false discoveries" / "discoveries" = FP / (FP + TP)

DESeq2: Automated independent filtering of genes

- DESeq2 automatically omits weakly expressed genes from the multiple testing procedure
 - -Fewer tests increase statistical power \rightarrow more discoveries
- LFC estimates for weakly expressed genes very noisy

-Very little chance that these will detected as DE

• Threshold overall counts (filter statistic) optimized for target FDR (default FDR = 0.1)

Figure 1: The number of rejected tests for FDR less than 0.1 plotted over theta, the quantiles of the filter statistic.

Type of analyses

DESeq2: Design specifications

dds <- **DESeqDataSetFromMatrix**(countData = cts, colData = coldata, design= ~ treatment)

dds <- **DESeqDataSetFromMatrix**(countData = cts, colData = coldata, design= ~ batch + treatment)

Model genotype by treatment interaction:

dds <- **DESeqDataSetFromMatrix**(countData = cts, colData = coldata, design= ~ batch + genotype + treatment + genotype:treatment)

Likelihood ratio test for genotype by treatment interaction: ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment)</pre>

resLRT <- results(ddsLRT)

DESeq2: Output of DE analysis

1	gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
2	gene27816	416.9148177	-2.511490321	0.428727267	-5.858013979	4.68E-09	5.11E-05
3	gene27620	101.8253191	-2.778767979	0.553389846	-5.021357008	5.13E-07	0.001440413
4	gene31204	365.5088989	-1.143004071	0.227873895	-5.015950038	5.28E-07	0.001440413
5	gene4446	125 745322	-3 205715488	0 637910711	-5 025335725	5,03E-07	0.001440413
6	gene1 Get list of interesting genes by filtering on:						0.002553055
7							0.002553055
8	gene3	L. P _{adj}	(FDR) < 0.0	5, and/or		77E-06	0.002756968
9	genes 2. log2FoldChange < -1 or >1. and/or					23E-06	0.003038386
10	gene2			tional)	,, .	89E-06	0.005937898
11	gene2	5. pase	ewean (op)	lional)		99E-06	0.007929629
12	gene9777	207.8848249	0.90630494	0.202189437	4.482454445	7.38E-06	0.007929629
13	gene21278	357.2070995	-1.375680007	0.309791352	-4.440666269	8.97E-06	0.008159457
14	gene34591	77.02015308	-2.724251177	0.632181028	-4.309289679	1.64E-05	0.013754978

...bottom of file = genes excluded from multiple testing:

22902	gene599	0.182683434	1.286409862	4.409114495	0.291761501	0.770468983	NA
22903	gene11602	0.175175275	1.286401869	4.409114509	0.291759687	0.77047037	NA
22904	gene30325	0.168776837	1.606989135	4.409114563	0.364469807	0.715507216	NA
22905	gene35203	0.159702673	1.846921927	4.40661107	0.419125241	0.675124605	NA
22906	gene25371	0.153270142	1.286411877	4.409114495	0.291761958	0.770468634	NA
22907	gene7678	0.141308727	0.93343057	4.407959907	0.211760222	0.832294103	NA
22908	gene13239	0.132221267	1.492522653	2.686412371	0.55558211	0.578496564	NA
22909	gene1935	0.116143364	0.740578083	4.395665987	0.168479153	0.866206343	NA
22910	gene26270	0.107670322	2.315104965	4.402746292	0.525832017	0.599004927	NA
22911	gene30327	0.060455387	0.580738721	4.403240387	0.131888943	0.895072134	NA
22912	gene26805	0.013434773	1.286431679	4.40911449	0.291766449	0.770465199	NA
-							

Clustering analysis

1.Hierarchical2.K-means3.Co-expression network

Prepare data for clustering

Step 1. LOG transformation of CPM value to improve the distribution

Step 2. Remove genes with no variation across samples

Clustering analysis on multiple conditions of RNA-seq data

Hierarchical clustering

K-means clustering

\$TRINITY_HOME/Analysis/DifferentialExpression/ define_clusters_by_cutting_tree.pl -R diffExpr.P0.001_C2.matrix.RData -K 18

K-means clustering

Co-expression network modules

WGCNA (weighted correlation network analysis)

 transform the initial distance matrix into Topological Overlap Matrix

http://rgm3.lab.nig.ac.jp/RGM/R_image_list?package=WGCNA&init=true

Gene Set Enrichment Analysis

Will be covered in this workshop: Genome Annotation And Sequence Based Gene Function Prediction (December 12 and 19 2018)

https://www.ebi.ac.uk/training/online/course/functional-genomics-iicommon-technologies-and-data-analysis-methods/gene-set-enrichment