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RNA-Seq Statistics:

Genes Control Treated
Gene A 10 30
Gene B 30 90
Gene C 5 15
Gene D 1 3
Gene N 80 240

126           378

• Normalization between samples;

• Differentially Expressed Genes (DE);
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Before normalization After normalization
MA Plots between samples 

• Y axis: log ratio of expression level between two conditions;
• With the assumption that most genes are expressed equally, the log ratio should mostly be close to 0 

Genes Control Treated

Gene A 10 30

Gene B 30 90

Gene C 5 15

Gene D 1 3

Gene N 80 240
126                 378



Simple normalization 
CPM (Count Per Million Reads)

Normalized by:
– Total fragment count;

FPKM (Fragments Per Kilobase Of Exon Per Million Fragments)

Normalized by:
– Total fragment count;
– Gene length (kb);

CPM : Not normalized by gene length. Longer genes tend to have higher CPM values 
than shorter genes. But that is ok, as in RNA-Seq experiments, we do not compare 
between genes, only compare the same gene between different samples. 



Genes Control Treated
Gene A 10 30
Gene B 30 90
Gene C 5 15
Gene D 1 3
Gene N 1000 240

1046           378

Simple normalization could fail



TMM normalization
(Trimmed mean of M-values )

M = log2(Test/Test_total)-log2(Ref/Ref_total)

A  =0.5 *log2(Test/Test_total*Ref/Ref_total)

Effective library size

M

A



DESeq2 normalization

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Geomean

34 56 23 12 10 30 23
10 6 7 11 12 8 9
65 78 67 34 56 23 50

Gene1

1. For each gene, calculate geometric mean

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1.5 2.4 1.0 0.5 0.4 1.3

1.1 0.7 0.8 1.3 1.4 0.9

1.3 1.6 1.4 0.7 1.1 0.5

2. For each gene, calculate ratio to geometric mean

Gene 2
……
Gene n

Gene1

Gene 2
……
Gene n

1.3 1.6 1 0.7 1.1 0.9

3. Take median of these ratio as sample normalization factor



Control:
Repeat 1 24
Repeat 2 25
Repeat 3 27

Treated:
Repeat 1 23
Repeat 2 26
Repeat 3 102

Expression level of gene 1

Question : is this a DE gene?
You might get different answers depending 
of which software you run. 

Differentially Expressed Genes



Available RNA-seq analysis packages for DE

From: Schurch et al. 2016. RNA 22:839-851



Why DESeq2?

1. Top method recommended by Schurch et al. (2016), along with 
EdgeR (exact)

2. Cutting-edge tool widely used and accepted: 11,934 citations 
(Google Scholar on Oct 25, 2019)

3. Documentation (and papers) very thorough and well-written
4. The first author (Mike Love) provides amazing support! Most 

questions that you Google (e.g., support.bioconductor.org) are 
clearly and definitively answered by the author himself.

5. See https://mikelove.wordpress.com/2016/09/28/deseq2-or-edger/

6. R functions in DESeq2 package are intuitive to R users (and 
modifiable). Defining the experimental design is easy and 
intuitive, even for complex, multifactor designs:

design= ~ batch + weight + genotype + treatment + genotype:treatment



Experimental design 

PCA Plots

Too many DE genes

Too few DE genes

: Control samples

: Treated samples



Remove outlier samples



Biological vs. technical replicates

Scenario Replicate
Type

Split tissue sample evenly into 2 RNA preps Technical

Split RNA sample into two library preps Technical

Split library across two sequencing flow cells Technical

RNA prep from different leaves on same plant Technical/Biological

Different clones of the same genotype in same 
treatment condition Biological

Different genotypes in same treatment condition Biological



Expression level
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If we could do 100 biological replicates, 

Control samples

Treated samples

Distribution of Expression Level of A Gene

Differentially expressed genes



Expression level
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Distribution of Expression Level of A Gene

The reality is, often we can only afford 3 replicates, 

Control samples

Treated samples



How many biological replicates?

From: Schurch et al. 2016. RNA 22:839-851

log2 fold change threshold
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• 3 replicates are the bare minimum for publication
• Schurch et al. (2016) recommend at least 6 replicates for 

adequate statistical power to detect DE
• Depends on biology and study objectives
• Trade off with sequencing depth
• Some replicates might have 

to be removed from the analysis
because poor quality (outliers)



Hypothesis tests require accurate statistical model

Gaussian (Normal)

Poisson (variance=mean)
Negative binomial

(variance > mean)



Negative binomial best fit for RNA-Seq data 



DESeq2 fits an negative binomial model
Raw count for gene  i in sample  j Controls the variance

Normalization (“size”) factor Normalized count

Design matrix
-- Control or Treatment?
-- Batch (e.g., flow cell or plate)
-- Other co-factors (e.g., sex)

Coefficient

GLM coefficients
-- One for each Design matrix element

= strength of effect
-- Overall expression strength of gene
-- log2 fold change



DESeq2: Empirical Bayes shrinkage of dispersion 

• Not enough replicates to estimate variance (”dispersion”) for individual genes
• Borrow information from genes of similar expression strength among the replicates
• Genes with very high dispersion left as is (violate model assumptions?)



DESeq2: Empirical Bayes shrinkage of fold change
MLE MAP

Normalized Counts Likelihood & Posterior Densities



DESeq2: Empirical Bayes shrinkage of log fold 
change improves reproducibility 

• Large data-set split in half  compare log2 fold change estimates for each gene

Before shrinkage: After empirical Bayesian shrinkage:



DESeq2: Statistical test for DE
MLE MAP

Normalized Counts Likelihood & Posterior Densities

• (shrunkenLFC) / (stdErr) = Z stat
• Z stat follows std. normal dist.
• p value for Z stat (LFC) obtained 

from standard normal distribution
• p values adjusted for multiple 

testing using Benjamini and 
Hochberg (1995) procedure

– Controls false discovery rate (FDR)

Test for DE:



False Discovery Rate
Truth

Different Same Total

Experiment
Different TP FP R

Same FN TN m - R

Total P N m

• m: total number of tests (e.g., genes)
• N: number of true null hypotheses
• P: number of true alternate hypotheses
• R: number of rejected null hypotheses (“discoveries”)
• TP: number of true positives (“true discoveries”)
• TN: number of true negatives
• FP: number of false positives (“false discoveries”) (Type I error)
• FN: number of false negatives (Type II error)
• FDR = “false discoveries” / “discoveries” = FP / (FP + TP)



DESeq2: Automated independent filtering of genes
• DESeq2 automatically omits weakly expressed genes from the 

multiple testing procedure
–Fewer tests increase statistical power more discoveries

• LFC estimates for weakly expressed genes very noisy
–Very little chance that these will detected as DE

• Threshold overall counts (filter statistic) optimized for target 
FDR (default FDR = 0.1)



Control Treated

One factor

Genotype1

Two factors

Genotype2

Genotype1
Un-treated

Genotype2
Treated

Un-treated Treated

0 hr

Time series

1 hr 3 hr 5 hr 8 hr

Type of analyses



DESeq2: Design specifications
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ treatment)

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ batch + treatment)

# Model genotype by treatment interaction:
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ batch + genotype + treatment + genotype:treatment)

# Likelihood ratio test for genotype by treatment interaction:
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment )

resLRT <- results(ddsLRT)



DESeq2: Output of DE analysis

…bottom of file = genes excluded from multiple testing:

Get list of interesting genes by filtering on:
1. padj (FDR) < 0.05, and/or
2. log2FoldChange < -1 or >1, and/or
3. baseMean (optional) 



Clustering analysis

1.Hierarchical
2.K-means
3.Co-expression network
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Step 1. LOG transformation of CPM value to 
improve the distribution

Prepare data for clustering 

Step 2. Remove genes with no variation across 
samples



1 2 3 4

Clustering analysis on multiple conditions of RNA-seq data



Hierarchical clustering

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=7fYEgXjN-jZqjM&tbnid=fshFHuxZBkXQyM:&ved=0CAUQjRw&url=http://compbio.pbworks.com/w/page/16252903/Microarray%20Clustering%20Methods%20and%20Gene%20Ontology&ei=Ch8dU7SaK-WSyAH8rICoDw&bvm=bv.62578216,d.aWc&psig=AFQjCNFOiA3MU12-DWk0PKdk5_hVaO_Ylw&ust=1394503817870479


$TRINITY_HOME/Analysis/DifferentialExpression/
define_clusters_by_cutting_tree.pl  -R 
diffExpr.P0.001_C2.matrix.RData -K 18 

K-means clustering



K-means clustering

K value need to be pre-specified

http://upload.wikimedia.org/wikipedia/commons/e/e5/KMeans-Gaussian-data.svg


WGCNA (weighted correlation network analysis)
• transform the initial distance matrix into 

Topological Overlap Matrix

Co-expression network modules

http://rgm3.lab.nig.ac.jp/RGM/R_image_list?package=WGCNA&init=true



https://www.ebi.ac.uk/training/online/course/functional-genomics-ii-
common-technologies-and-data-analysis-methods/gene-set-enrichment

Gene Set Enrichment Analysis
Will be covered in this workshop:
Genome Annotation And Sequence Based Gene 
Function Prediction (December 12 and 19 2018)

https://biohpc.cornell.edu/ww/1/Default.aspx?wid=113
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