
Exercise 1: De novo transcriptome
assembly using Trinity

Contact

Questions related to this exercise should be directed to Qi Sun (qs24@cornell.edu) and Robert
Bukowski (bukowski@cornell.edu).

Data used in the exercise

RNA-Seq data used here, taken from Trinity workshop website
(ftp://ftp.broadinstitute.org/pub/users/bhaas/rnaseq_workshop/rnaseq_workshop_2014/Trinity_
workshop_activities.pdf), corresponds to Schizosaccharomyces pombe (fission yeast), involving
paired-end 76 base strand-specific RNA-Seq reads corresponding to four samples: Sp_log
(logarithmic growth), Sp_plat (plateau phase), Sp_hs (heat shock), and Sp_ds (diauxic shift). There
are left.fq and right.fq FASTQ formatted Illlumina read files for each of the four samples.
Although the reads represent genuine sequence data, they were artificially selected and
organized so as to provide varied levels of expression in a very small data set, which could be
processed and analyzed within the scope of a workshop.

Log in to your workshop machine

The machine allocations are listed on the workshop website: https://biohpc.cornell.edu/ww/mach
ines.aspx?i=123.

Details of the login procedure using ssh or VNC clients are available in the document https://bioh
pc.cornell.edu/lab/doc/Remote_access.pdf.

Use your ssh client with BioHPC Lab credentials to open an ssh session. If you wish, you can
open multiple sessions to have access to multiple terminal windows (useful for program
monitoring).

Alternatively, use the VNC client to open a VNC graphical session (you will need to first start the
VNC server on the machine from “My Reservations” page reachable from https://biohpc.cornell.
edu after logging in to the website. To close the VNC connection, click on the “X” in top-right
corner of the VNC window (but DO NOT log out!). This will ensure that your session (all windows,
programs, etc.) will keep running so that you can come back to it by logging in again.

Prepare input files

If not yet done, create your subdirectory in the scratch file system /workdir. In the following, we
will assume the user ID – please replace it with your own user ID.

Copy the exercise files from the shared location to your scratch directory (it is essential that all
calculations take place here):

 cd /workdir

 mkdir <yourID>

 cd <yourID>

af://n407
af://n409
mailto:qs24@cornell.edu
mailto:bukowski@cornell.edu
af://n411
ftp://ftp.broadinstitute.org/pub/users/bhaas/rnaseq_workshop/rnaseq_workshop_2014/Trinity_workshop_activities.pdf
af://n414
https://biohpc.cornell.edu/ww/machines.aspx?i=123
https://biohpc.cornell.edu/lab/doc/Remote_access.pdf
https://biohpc.cornell.edu/
af://n419

When the copy operation completes, verify by listing the content of the current directory with the
command ls -al . You should see 8 gzipped read files in a listing similar to this:

Along with the read files (*.fq.gz), a shell script my_trinity_script.sh containing the actual
Trinity commands, is also provided for convenience.

Check the sequencing quality (optional)

This step summarizes the sequencing quality of the data. It is recommended to run this step
before starting the assembly – it may help set the read trimming parameters for Trinity run.

-o qcreport : specify the output directory (./qcreport) where the QC reports will be
stored.
All the fastq files should be specified, separated by space “ “. The wildcard * also does the
job.
The last command will be run in the background (note the “ & ” at the end) and all its screen
output will be saved in file qc_report.log (nothing special, but worth examining in case of
run-time errors). The command should complete in about 15s (it takes longer with “real”
data). When it does, hitting “Enter” will show the confirmation.
After fastqc completes, you can use any sftp client (e.g., FileZilla) to copy the qcreport
directory to you laptop computer, and open each of the *_fastqc_report.html files (one
per each fastq file) with a web browser. If you are working in graphical environment (i.e., via
VNC), you can launch the Firefox browser directly on the Linux workstation and navigate to
*_fastqc_report.html files.

RNA-Seq data is expected to fail some of the tests run by the fastqc tool (higher than expected
repetitious content, unequal nucleotide distribution in the beginning of a read due to the use of
non-random primers) – this should not be a reason for concern. The fastqc results can be used
primarily to decide the amount of sequence trimmed from each end of the read because of poor
base quality.

Set up Trinity run

 cp /shared_data/Trinity_workshop_2018/part1/* .

ls -al

-rwxr-x--- 1 bukowski bukowski 868 Apr 3 13:31 my_trinity_script.sh

-rw-r----- 1 bukowski bukowski 5790168 Apr 3 13:31 Sp_ds.left.fq.gz

-rw-r----- 1 bukowski bukowski 5590326 Apr 3 13:31 Sp_ds.right.fq.gz

-rw-r----- 1 bukowski bukowski 5815390 Apr 3 13:31 Sp_hs.left.fq.gz

-rw-r----- 1 bukowski bukowski 5751383 Apr 3 13:31 Sp_hs.right.fq.gz

-rw-r----- 1 bukowski bukowski 2154125 Apr 3 13:31 Sp_log.left.fq.gz

-rw-r----- 1 bukowski bukowski 2097534 Apr 3 13:31 Sp_log.right.fq.gz

-rw-r----- 1 bukowski bukowski 5488286 Apr 3 13:31 Sp_plat.left.fq.gz

-rw-r----- 1 bukowski bukowski 5238362 Apr 3 13:31 Sp_plat.right.fq.gz

 cd /workdir/

 mkdir qcreport

 fastqc -o qcreport *.fq.gz >& qc_report.log &

af://n448
af://n487

Although Trinity is launched with a single command, this command tends to be long and
cumbersome to type. It is easier to include such a command in a shell script, where it can be
easily examined and edited for future runs. A script like this, called my_trinity_script.sh , is
provided for your convenience (it should have been copied to your scratch directory along with
the input files).

Examine this script. While in the scratch directory /workdir/ , open the file in a text editor (e.g.,
nano or vim) by typing

The first line of the script tells Linux which interpreter to use to run the commands (here: bash).
The second line defines a variable pointing to the directory where Trinity executable is located.
This variable is then used (note “$” upfront) in the actual Trinity command, which occupies the
subsequent lines of the script. Note that the “\” characters at line ends (they need to be the very
last characters in line) serve the purpose of breaking long lines into readable pieces – otherwise
the whole command would have to be written as a single line.

You may want to edit the options controlling the initial read trimming (see the relevant comment
in the script) based on your analysis of the fastqc results (see previous section) – although the
default parameters invoked implicitly with option –trimmomatic should be OK. You may want to
add read normalization option (see the comment inside the script), although this will not have
much effect with the limited data set used in his exercise. Do not change options --CPU and --

max_memory . Since there are several users sharing each machine during the workshop, setting
these options too high may cause the machine to run out of resources. The low CPU and memory
settings proposed in the script are sufficient to complete the exercise. In the case of real run with
real data, when the whole machine is dedicated to one Trinity instance, these options may and
should be set much higher (see presentation for more hints).

After examining the script, exit the editor (Ctrl-X in nano). If you made any changes you want to
keep, don’t forget to save them upon exit.

Start Trinity run

Before starting Trinity, it will be convenient to open another terminal window – this will come
useful later for monitoring the run. It you are accessing the machine using an ssh client, open
another session by logging in again. If you use VNC connection, simply right-click anywhere with
desktop and choose “Open in terminal” to open another terminal window.

In one of the windows, while in our scratch directory (if in doubt, enter cd /workdir/), make
sure the script my_trinity_script.sh is executable, i.e., there is an “x” in the 4th column when
the file is listed with the ls -al commad:

If needed, make the file executable:

 Then launch the script:

 nano my_trinity_script.sh

ls -al my_trinity_script.sh

-rwxr----- 1 bukowski bukowski 695 Mar 5 13:56 my_trinity_script.sh

 chmod u+x my_trinity_script.sh

af://n529

All screen output (info messages and error messages, if any) will be saved in the file
my_trinity_script.log . The script will start executing in the background (the & at the end), so
that the terminal will return to the prompt right after you hit “Enter”. You can use it (together with
the additional terminal you opened before launching Trinity) to monitor the run. Or you can log
out (close the session) – the program will keep running. You can examine the results when you
log in to the machine again.

The exercise run is expected to take a few minutes.

Monitor the Trinity run

There are several ways to see how a Trinity run is progressing:

Use the top command. In one of the terminal windows, run

top -u <yourID>

You will see a dynamically updated list of your processes, with the ones taking the most CPU on
top of the list. You can also see the % of memory taken by each process. As Trinity progresses,
you will see different program names on top of the list (e.g., jellyfish, inchworm, bowtie2,
samtools, salmon, GraphFromFasta, ReadsToTranscripts, perl, java). Some of these
programs are multi-threaded and will be shown as consuming about 200% CPU (corresponding
to the --CPU 2 setting). Others (like some perl scripts or java VM running Butterfly) will show as
single-threaded processes running in parallel (i.e., two processes, each consuming about 100%
CPU). You may keep the top display running in one of the windows, or exit by hitting “q”.

Peek into the log file. The screen output (here: saved into the file my_trinity_script.log)
contains messages from the Trinity script itself as well as from the programs it calls. Although the
messages may sound cryptic at times, they generally allow the user to figure out which stage of
the calculation is running at the moment. It also contains useful timing information (start and
end dates of individual stages). To look into the log file, you can use any of the following
commands

more my_trinity_script.log (page through the file from the beginning)

tail -100 my_trinity_script.log (display the last 100 lines of the file)

tail -f my_trinity_script.log (continuously display incoming lines)

Of course, you can also look at the whole file by opening it in a text editor. Upon exit, discard any
changes you may have inadvertently made.

Look into the output directory. As the run progresses, various intermediate files and
directories are being produced in the output directory specified in Trinity command line using --

output option (here: /workdir//trinity_out). First, if --trimmomatic option was invoked, the
read cleanup will be run and cleaned read files will be written. Otherwise, if the input files were
compressed with gzip (as in this example), Trinity will un-compress them. The FASTQ files
(original or trimmed) will be then converted into FASTA format and combined into a single
both.fa file located in the output directory. If the in-silico normalization was not suppressed, a
subfolder insilico_read_normalization will be created in the output directory to store the
normalization results. Most files in the output directory are named after the Trinity stage that
produced them. In particular, files with names ending with .ok or .finished indicate that a

 nohup ./my_trinity_script.sh >& my_trinity_script.log &

af://n541

given stage has successfully completed. The presence of the file recursive_trinity.cmds
indicates that the run is in the final stage which involves processing of multiple independent
assembly commands. This stage benefits the most from parallel processing on multiple CPU
cores.

Restarting Trinity

Should a Trinity run fail for any reason, it can be re-started from the last successfully completed
stage using the same command, possibly changed to correct for the reason of the crash (inferred
from error messages in the screen log file, for example). Typically, crashes happen due to
insufficient memory. The final stage of the run (Butterfly) is most susceptible to crashes. Restart
with reduced --CPU setting will usually allow Trinity to run to completion.

Check the final result

Upon successful completion of Trinity, the assembled transcriptome is written to the FASTA file
called Trinity.fasta located in the output directory (here: /workdir/trinity_out). If this file
is not present, it means that Trinity did not yet finish (the top listing will then still be showing
Trinity-related commands running), or that it crashed. In such a case, examine the log file for
errors. For a quick check, execute (while in the scratch directory /workdir/)

If the above command does not produce any output, the run went smoothly.

Trinity.fasta contains transcripts to be evaluated, annotated, and used in downstream
analysis of expression. In this exercise, we only concentrate on basis quality evaluation of the
assembled transcriptome.

Basic contig statistics

Basic contig statistics can be obtained using a Trinity utility script TrinityStats.pl . In your
scratch directory, type (on a single line)

The output (written to the screen) will contain basic information about contig length distributions,
based on all transcripts and only on the longest isoform per gene. Besides average and median
contig lengths, also given are quantities N10 through N50. Nx is the smallest contig length such
that x% of all assembled bases are in contigs longer than Nx. Specifically, N50 is the contig length
such that half of all assembly sequence is contained in contigs longer than that. In whole genome
assembly, N50 is often used as a measure (one of many) of assembly quality, since the longer the
contigs, the better the assembly. In the case of transcriptome, contig lengths should be correct,
which does not imply “large”. If it falls in the right ballpark (about 1000-1,500), N50 can still be
used as a check on overall “sanity” of the transcriptome assembly.

 grep -i error my_trinity_script.log

 /programs/trinityrnaseq-v2.8.6/util/TrinityStats.pl

./trinity_out/Trinity.fasta

af://n602
af://n606
af://n611

	Exercise 1: De novo transcriptome assembly using Trinity
	Contact
	Data used in the exercise
	Log in to your workshop machine
	Prepare input files
	Check the sequencing quality (optional)
	Set up Trinity run
	Start Trinity run
	Monitor the Trinity run
	Restarting Trinity
	Check the final result
	Basic contig statistics

