Gene Function Prediction & Whole Genome Alignment.

Qi Sun, Cheng Zou Bioinformatics Facility Cornell University

Given a protein, how to predict its function?

>unknown_protein

MEPSSETGMDPPLSQETFEDLWSLLPDPLQTVTCRLDNLSEFPDYPLAADMSVLQEGLMGNAVPTVTSCA PSTDDYAGKYGLQLDFQQNGTAKSVTCTYSPELNKLFCQLAKTCPLLVRVESPPPRGSILRATAVYKKSE HVAEVVKRCPHHERSVEPGEDAAPPSHLMRVEGNLQAYYMEDVNSGRHSVCVPYEGPQVGTECTTVLYNY MCNSSCMGGMNRRPILTIITLETPQGLLLGRRCFEVRVCACPGRDRRTEEDNYTKKRGLKPSGKRELAHP PSSEPPLPKKRLVVDDDEEIFTLRIKGRSRYEMIKKLNDALELQESLDQQKVTIKCRKCRDEIKPKKGKK LLVKDEQPDSE

BLAST

mutant tumor protein p53 [Homo sapiens] Sequence ID: AYE20623.1 Length: 393 Number of Matches: 1 Range 1: 3 to 393 GenPept Graphics Next Match A Previo Score Expect Method Identities Positives Gaps 345 bits(884) 4e-116 Compositional matrix adjust. 203/399(51%) 252/399(63%) 47/399(11%) EPSSETGMDPPLSQETFEDLWSLLPD----PLQTVTCRLDNLSEFPD---YPLAADMSV 53 Query 2 EP S+ ++PPLSQETF DLW LLP+ PL + +D+L PD D Sbjct 3 EPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQA--MDDLMLSPDDIEQWFTEDPGP 60 LQEGLMGNAVPT-----VTSCAPSTDDYAGKYGLQLDFQQNGTAK 93 Query 54 + M A P ++S PS Y G YG +L F +GTAK Sbjct 61 DEAPRMPEAAPPVAPAPAAPTPAAPAPAPSWPLSSSVPSQKTYQGSYGFRLGFLHSGTAK 120 Query 94 SVTCTYSPELNKLFCQLAKTCPLLVRVESPPPRGSILRATAVYKKSEHVAEVVKRCPHHE 153 SVTCTYSP LNK+FCQLAKTCP+ + V+S PP G+ +RA A+YK+S+H+ EVV+RCPHHE Sbjct 121 SVTCTYSPALNKMFCQLAKTCPVQLWVDSTPPPGTRVRAMAIYKQSQHMTEVVRRCPHHE 180 RSVEPGEDAAPPSHLMRVEGNLQAYYMEDVNSGRHSVCVPYEGPQVGTECTTVLYNYMCN 213 Query 154 R + + APP HL+RVEGNL+ Y++D N+ RHSV VPYE P+VG++CTT+ YNYMCN Sbjct 181 RCSD-SDGLAPPOHLIRVEGNLRVEYLDDRNTFRHSVVVPYEPPEVGSDCTTIHYNYMCN 239 SSCMGGMNRRPILTIITLETPQGLLLGRRCFEVRVCACPGRDRRTEEDNYTKK----RGL 269 SSCMGGMNRRPILTIITLE G LLGR FEVRVCACPGRDRRTEE+N+ KK L Query 214 Sbjct 240 SSCMGGMNRRPILTIITLEDSSGNLLGRNSFEVRVCACPGRDRRTEEENFRKKGEPHHEL 299 270 KP-SGKRELAHPPSSEPPLPKKRLVVDDDEEIFTLRIKGRSRYEMIKKLNDALELOESLD 328 Query P S KR L + SS P KK L D E FTL+I+GR R+EM ++LN+ALEL+++ PPGSTKRALPNNTSSSPOPKKKPL----DGEYFTLQIRGRERFEMFRELNEALELKDA-Q 354 Sbjct 300 QQKVTIKCRKCRDEIKPKKG-----KKLLVKDEQPDSE 361 Query 329 K R +K KKG KKL+ K E PDS+ AGKEPGGSRAHSSHLKSKKGQSTSRHKKLMFKTEGPDSD 393 Sbjct 355

HMM

-		
Domain	Description	Evalue
P53_TAD	P53 transactivation motif	3.80E-10
Р53	P53 DNA-binding domain	2.70E-59
P53_tetramer	P53 tetramerisation motif	1.30E-17

BLAST Databases

NCBI

Genbank

-user submitted

Refseq

-NCBI curated

Commands to use:

https://www.ncbi.nlm.nih.gov/gen ome/doc/ftpfaq/#allcomplete <u>EBI</u>

Uniref100 -all proteins Uniref90 -collapse proteins 90% identical Uniref50 -collapse proteins 50% identical

Ensembl Plant Ensembl

For individual genome

Others

Institute specific JGI Genome Portal

Species specific

Flybase (fruit fly) Wormbase (C. elegans) SGD (yeast) TAIR (Arabidopsis)

* Mostly deposited to NCBI or EBI

Using BioMart in Ensembl or Plant. Ensembl for gene ID conversion

NCBI Honeybee Assembly Record

Index of /genomes/all/GCF/003/254/395/GCF_0

Name	Last modif:	ied	Size
Parent Directory			-
Annotation_comparison/	2019-08-07	20:38	-
Evidence_alignments/	2019-08-07	20:38	-
GCF_003254395.2_Amel_HAv3.1_assembly_structure/	2019-08-07	20:37	-
<u>Gnomon_models/</u>	2019-08-07	20:38	-
RefSeq_transcripts_alignments/	2019-08-07	20:38	-
Apis_mellifera_AR104_annotation_report.xml	2019-08-07	20:37	108K
<pre>GCF_003254395.2_Amel_HAv3.1_assembly_report.txt</pre>	2019-08-07	20:37	20K
<pre>GCF_003254395.2_Amel_HAv3.1_assembly_stats.txt</pre>	2019-08-07	20:37	18K
<pre>GCF_003254395.2_Amel_HAv3.1_cds_from_genomic.fna.gz</pre>	2019-08-07	20:37	9.0M
<pre>GCF_003254395.2_Amel_HAv3.1_feature_count.txt.gz</pre>	2019-08-07	20:37	476
<pre>GCF_003254395.2_Amel_HAv3.1_feature_table.txt.gz</pre>	2019-08-07	20:37	1.4M
<pre>GCF_003254395.2_Amel_HAv3.1_genomic.fna.gz</pre>	2019-08-07	20:37	66M
<pre>GCF_003254395.2_Amel_HAv3.1_genomic.gbff.gz</pre>	2019-08-07	20:38	95M
<pre>GCF_003254395.2_Amel_HAv3.1_genomic.gff.gz</pre>	2019-08-07	20:38	6.4M
<pre>GCF_003254395.2_Amel_HAv3.1_genomic.gtf.gz</pre>	2019-08-07	20:38	5.9M
<pre>GCF_003254395.2_Amel_HAv3.1_genomic_gaps.txt.gz</pre>	2019-08-07	20:38	770
<pre>GCF_003254395.2_Amel_HAv3.1_protein.faa.gz</pre>	2019-08-07	20:38	6.1M
<pre>GCF_003254395.2_Amel_HAv3.1_protein.gpff.gz</pre>	2019-08-07	20:38	14M
<pre>GCF_003254395.2_Amel_HAv3.1_pseudo_without_product.fna.gz</pre>	2019-08-07	20:38	39K
GCF_003254395.2_Amel_HAv3.1_rm.out.gz	2019-08-07	20:38	6.9M
GCF_003254395.2_Amel_HAv3.1_rm.run	2019-08-07	20:38	888
<u>GCF_003254395.2_Amel_HAv3.1_rna.fna.gz</u>	2019-08-07	20:38	19M
<u>GCF_003254395.2_Amel_HAv3.1_rna.gbff.gz</u>	2019-08-07	20:38	50M
<pre>GCF_003254395.2_Amel_HAv3.1_rna_from_genomic.fna.gz</pre>	2019-08-07	20:38	17M
<pre>GCF_003254395.2_Amel_HAv3.1_translated_cds.faa.gz</pre>	2019-08-07	20:38	5.6M
<u>README.txt</u>	2020-09-02	16:26	43K
README_Apis_mellifera_annotation_release_104	2019-08-07	20:37	712
annotation_hashes.txt	2019-08-07	22:35	410
<u>assembly_status.txt</u>	2020-09-24	17:09	14
<u>md5checksums.txt</u>	2019-08-07	22:35	19K

<u>Genome</u> *_genomic.fna.gz

<u>cDNA</u>

*_cds_from_genomic.fna.gz

<u>Proteins</u>

- *_protein.faa.gz
- *_translated_cds.faa.gz

* Protein sequences in *_translated_cds.faa.gz is better correlated with cDNA

GFF and GTF

Coordinates file

How to describe the function of a gene?

Free text: Each gene is associated with a sentence and/or a paragraph

Gene ID	Gene description
GRMZM2G002950	Putative leucine-rich repeat receptor-like protein kinase family
GRMZM2G006470	Uncharacterized protein
GRMZM2G014376	Shikimate dehydrogenase; Uncharacterized protein
GRMZM2G015238	Prolyl endopeptidase
GRMZM2G022283	Uncharacterized protein

How to describe the function of a gene?

Gene Ontology: A set of controlled vocabulary

	metabolic			
Gene	process		GO	
GRMZ	Л5G888620		GO:0003674	
GRMZN	Л5G888620		GQ:0008150	
GRMZM5G888620			GO:0008152	
GRMZM5G888620			GO:0016757	
GRMZM5G888620			GO:0016758	
GRMZM2G133073			GO:0003674	
GRMZM2G133073			GQ:0016746	

A gene can be associated with multiple GO

transferase activity, transferring acyl groups

Hierarchical structure of the gene ontology terms

GO SLIM How to make a pie chart?

developmental processes cell organization and biogenesis

A pie chart with too many categories

Gene compositions in a species

Collapse to GO SLIM

How to attach Gene Ontology terms to each gene?

GRMZM2G035341	molecular_function	GO:0008270	zinc ion binding
GRMZM2G035341	molecular_function	GO:0046872	metal ion binding
GRMZM2G035341	cellular_component	GO:0005622	intracellular
GRMZM2G035341	cellular_component	GO:0019005	SCF ubiquitin ligase complex
GRMZM2G035341	biological_process	GO:0009733	response to auxin
GRMZM2G047813	molecular_function	GO:0003677	DNA binding
GRMZM2G047813	cellular component	GO:0005634	nucleus
GRMZM2G047813	cellular_component	GO:0005694	chromosome
GRMZM2G047813	biological_process	GO:0006259	DNA metabolic process
GRMZM2G047813	biological_process	GO:0034641	cellular nitrogen compound metabolic process

For model organisms, you can download GO annotation from Ensembl BioMart:

Animal genomes: <u>http://www.ensembl.org</u> Plant genomes: <u>http://plants.ensembl.org</u>

CENSEMBI BLAS	ST/BLAT BioMart Tools Downloads Help & Do	 New Count Results 	T/BLAT BioMart Tools Downloads Help & Documentation	Blog Mirrors 🛃 - Search all species
esuits		Dataset		Associated Gene Name
		Gorilla genes (gorGor3.1)		Associated Gene Source
Dataset	- CHOOSE DATABASE - V	Filters	Protein ID	Associated Transcript Name
Dataset		[None selected]	Exon ID	Associated Transcript Source
[None selected]	- CHOUSE DATABASE -	Attributes	Description	Transcript count
	Ensembl Genes 87	Gene ID	Chromosome/scaffold name	GC content
	Mouse strains 87	GO Term Accession	Gene Start (bp)	Gene type
	Ensembl Variation 87		Strand	
	Ensembl Regulation 87	Dataset	Band	Source (transcript)
	Vega 67	[None Selected]	Transcript Start (bp)	Status (gene)
			Transcript End (bp)	Status (transcript)
			Transcription Start Site (TSS)	Version (gene)
			Transcript length (including UTRs and CDS)	Version (transcript)
			B EXTERNAL:	
			GO	
			Image: GO Term Accession	GO Term Evidence Code
			GO Term Name	GO domain
	-		GO Term Definition	

Non model organism

InterProScan (HMM + BLAST) Free

BLAST2GO (BLAST) License required

* BioHPC has a single-machine license on cbsumm10. Command line only, no GUI.

InterProScan integrate many software results to produce gene annotation: Interpro ID & GO

To run InterproScan on BioHPC, follow the instructions on this page: <u>https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=87#c</u>

BLAST2GO: a fast annotation pipeline based on **BLAST**

Three steps (<u>https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=87#c</u>)

1. BLAST (Run Diamond on BioHPC gen2 machine)

2. InterproScan (optional, also on a gen2 machine)

3. GO assignment (Run on cbsumm10, require license)

Diamond command:

Uniref90 as db

Output xml file

Directory to hold temporary files. "-t" is the same as "--tmpdir". "./" means current directory.

Tune performance and memory usage. The setting here is to maximize the performance.

diamond blastp \ --db uniref90 \ --query mygenome.protein.fasta --outfmt 5 \ --max-target-seqs 100 \ --max-hsps 1 --evalue 1e-10 \ -t / \ --block-size 10 --index-chunks 1 -o blastresults.xml

proteins in case some best hits do not have GO in **BLAST2GO** database

So that a target gene with multiple HSPs only show up once in result file.

More stringent evalue would lead to less but more reliable GO annotations.

Whole Genome Alignment

Genome alignment is based on local alignment

end-to-end alignment

find local region with highest similarity

Application of Genome Alignment

- Identify SV among the genome
- Chromosome rearrangement
- Syntenic orthologue
- Identify core genome and dispensable genome
- Find evolutionary footprints
- Coordinates lifting between Genome version

Three types of plots illustrating genome alignment

1. linear blocks plot

Guy L, Roat Kultima J, Andersson S G E. genoPlotR: comparative gene and genome visualization in R[J]. Bioinformatics, 2010, 26(18): 2334-2335.

Three types of plots illustrating genome alignment

1. linear blocks plot

Sturtevant D, Lu S, Zhou Z W, et al. The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds[J]. Science Advances, 2020, 6(11): eaay3240

Three types of plot illustrating genome alignment **2. dotplot**

With an alignment dot plot N x M matrix Let i = position in genome A Let j = position in genome B Fill cell (i,j) if A_i shows similarity to B_j A perfect alignment between A and B would completely fill the positive diagonal

Dotplot between Arabidopsis and Lyrata

Three types of plot illustrating genome alignment **3. circos plot**

The International Wheat Genome Sequencing Consortium (IWGSC) et al. Science 2018;361:eaar7191

How to build a genome alignment?

HSP(high-scoring segment pairs), Chain, Net

• Starts with a local alignment

Seeds are short near-matches between the target and query sequences, where "short" typically means less than 20 bp

--seed=match12 --seed=12of19

Chaining – joining the HSP(high-scoring segment pairs)

<<<<<< 102239206 cgtaagtcctgggcacatggg-gcaggttagggcacatctttcttctcag 102239254 |||||| <<<<<<<< 070047963 cgtaaggcctgggcacagaggagcaggttagggcacattcaccttctcag 070047914 102239255 gattctgtggcttctcctttgggggaggagaacatcttggagagcct 102239304 070047913 gattctgtggctccctcactggagaagggggggggcatcttgggggtgca 070047864 102239305 agtccaaga---gctaaggcagag---agaggtt----agagcccctg-t 102239343 <<<<<< 070047863 attccaagaacagcgagggcagaggttagagatggctgagagcccctaac 070047814 102239344 cttaggaggcatcacaacaggcagcaacaactttg--gaaagctggatga 102239391 070047813 ctgaggaggcaccacaataggcagcaacaactgtgtggaaagctagatga 070047764 102239392 actggtcagtagcagggaatggagcgagcaccgggttggcctcttagg- 102239440 <<<<<< 070047763 actggtcagtagcggaaaatgggagggggcactgg-ttggcctcttgggg 070047715 102239441 -----taaacctggcttagttgaactcatg-gaatacttggtattccc 102239482 <<<<<< 070047714 aggggtccaaccttggcttggatgagctcatgagaatacccggtgttccc 070047665 102239483 aagcagagtggggtggggcccaaagcccctttccctgtgtacctccttaa 102239532 <<<<<<<>></> 070047664 aagcagagcggggcagagcccaaagcccctttctctgcaggcctccttaa 070047615

102239533 g 102239533 <<<<<<< | <<<<<<<< 070047614 g 070047614

102239534 gaataaaaggcattcagggagtttccaggcaaggggtgccagaattagtc 102239583 070047597 gagaaaaaggcattcagggagccccctggaaaggggtgccagaattagtc 070047548

102239584 cttaaggcacagctgggggcagacaaggcgccaaggcacaattggtgggg 102239633 070047547 cttaaggcacagctgggg-cggacaaggcaccaaggcaccaactggtgggg 070047499

102239634 gggcaaagggatagcctccaagctgagtgccagggtcacaagaggatgca 102239683 070047498 gagggcagggcagcctccaagccgagtgccagggtcacaagaggacgca 070047449

102239684 ggaccgcccacgctttatcggtgttgggttaagcaccgcccggacagcct 102239733 <<<<<<<>></> 070047448 ggaccgtccccgcttgatcggagtggggttgagcacagcccggacagcct 070047399

102239734 ccgcaaacacctccttgacgccgtcttgttgcagtgctgagcactcgagg 102239783

070047398 cggcgaacacttccttgacaccatcctgttgcagggctgagcattcgagg 070047349

102239784 tagcgcacagcatggatctgcttggccagtgcctggccctgctgtggagt 102239833

<<<<<<<>></> 070047348 tagcgcacagcgtggatctgcttggccagtgcctggccctgctgcggtgt 070047299 102239834 gatgggcgcttgaccctgctccttgaggcgccgtagggtatcaggctggg 102239883 070047298 gatgggcgcctggccctgctccttgaggcgccgtagggtgtaaggctggg 070047249

> 102239884 ctctcaggtccttcttggtacccaccaggaggataggcacgtcagggcag 102239933 070047248 ctctcaggtccttcttggtgcccaccagcaggatgggtacatcagggcag 070047199

> 102239934 tggtgacaaacctctgggtgccatttgtgcctcacgttctcataggaggg 102239983 070047198 tggtggcacacctctggatgccacttgtgtcgcacgttctcataggaagg 070047149

Chaining the HSP(high-scoring segment pairs)

Chaining the HSP(high-scoring segment pairs)

• chr14:70,046,658-70,048,013 1,356 bp Rhesus Oct. 2010

Rhesus position: <u>chr14:54942051-89328298</u> size: 34386248 Strand: -Mouse position: <u>chr7:87110277-116542127</u> size: 29431851 Chain ID: 18 Score: 249021636 Approximate Score within browser window: 90214

In total, this chain contain 398 HSPs

 Rhesus position:
 chr14:70046817-70048041
 size:
 1225

 Strand: Mouse position:
 chr4:98234213-98235361
 size:
 1149

 Chain ID:
 19415
 Score:
 71386
 Approximate Score within browser window:
 68730

In total, this chain contain 24 HSPs

Many Chains can map to the same region

• chr14:70,046,658-70,048,013 1,356 bp Rhesus Oct. 2010

A net is a hierarchical collection of chains

The highest-scoring non-overlapping chains on top, and their gaps filled in where possible by lower-scoring chains, which in turn may have gaps filled in by lower-level chains and so on. Maximum seven level are allowed.

Chain and Net are enriched in exons

chr14:69,797,131-70,196,130 Rhesus Oct. 2010 399,000 bp.

Software and pipeline

- UCSC Blastz/Lastz, chain, netting pipeline
- MUMer (<u>Maximal Unique Matcher</u> (MUM) occurs only once in both sequences
- Minimap2 using minimizer to save sequence information
- MCScanX

UCSC Blastz/Lastz, chain, netting pipeline

- Step 0: Both genomes have to be repeatmasked and masked Tandem Repeat Finder (trf) first
- Step 1: Alignments with Blastz /lastz, an improved version of blastz
- Step 2: Chaining
- Step 3: Netting

UCSC tool chain command: <u>DoBlastzChainNet.pl</u> can now perform this entire sequence

MUMmer4

MUMmer4: Multithreaded, whole genome, align long reads, Comparative Scaffolding

- ./nucmer -p <prefix> <reference> <query>
- ./promer -p <prefix> <reference> <query>
- ./dnadiff [options] <reference> <query>
- ./mummerplot

Minimap2: A versatile pairwise aligner

Using Minimizer to representing sequences

./minimap2 -ax map-pb ref.fa pacbio.fq.gz > aln.sam # PacBio genomic reads ./minimap2 -ax map-ont ref.fa ont.fg.gz > aln.sam # Oxford Nanopore genomic reads ./minimap2 -ax asm20 ref.fa pacbio-ccs.fg.gz > aln.sam # PacBio CCS genomic reads ./minimap2 -ax sr ref.fa read1.fa read2.fa > aln.sam # short genomic paired-end reads ./minimap2 -ax splice ref.fa rna-reads.fa > aln.sam # spliced long reads (strand unknown) ./minimap2 -ax splice -uf -k14 ref.fa reads.fa > aln.sam # noisy Nanopore Direct RNA-seq ./minimap2 -ax splice:hg -uf ref.fa guery.fa > aln.sam # Final PacBio Iso-seg or traditional cDNA ./minimap2 -cx asm5 asm1.fa asm2.fa > aln.paf # intra-species asm-to-asm alignment ./minimap2 -x ava-pb reads.fa reads.fa > overlaps.paf # PacBio read overlap ./minimap2 -x ava-ont reads.fa reads.fa > overlaps.paf # Nanopore read overlap

pre-existing genome alignment database

<u>http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=cons100way</u>

PGDD

PLANT GENOME DUPLICATION DATABASE

While PGDD is no longer funded and therefore is not being regularly updated, we intend to keep it online for as long as resources permit and interest warrants. Periodic updates may occur but cannot be assured. Note the last update of PGDD was in 2014.

PGDD is a public database to identify and catalog plant genes in terms of intragenome or cross-genome syntenic relationships. Current efforts focus on flowering plants with available whole genome sequences (preferrably assembled pseudomolecules with ordered gene models).

DATA SOURCES

	Plant genomes in this database (47 genomes)					
	Species name	Common name	Version version	Gene number	Access	Reference
G	Actinidia chinensis	Kiwifruit	May 2013	32,670	KGD	Nature Communications
X	Amborella trichopoda	Amborella	Version 1.0	26,846	AGD	Science
4	Arabidopsis lyrata	Lyrate rockcress	Version 1.0	32,670	JGI	Nature Genetics
*	Arabidopsis thaliana	Arabidopsis	TAIR10	27,416	TAIR	Nature
ST.	Brachypodium distachyon	Purple false brome	Version 2.1	31,694	JGI	Nature
	Brassica oleracea	Kale	Version 2.1	59,225	BRAD	Genome Biology
0	Brassica rapa	Chinese cabbage	Version 1.3	40,492	BRAD	Nature Genetics
	Beta vulgaris	Sugar beet	RefBeet-1.1	27,421	BVR	Nature
X	Cajanus cajan	Pigeonpea	Nov 2011	48,680	IIPG	Nature Biotechnology
	Capsella rubella	Capsella	Version 1.0	26,521	JGI	Nature Genetics
60	Capsicum annuum	Hot pepper	Version 1.55	34,899	PepperGenomeDB	Nature Genetics
*	Carica papaya	Papaya	ASGPBv0.4	24,782	Hawaii	Nature
	Chlamydomonas reinhardtii	Green algae	Version 5.5	17,741	JGI	Science
法	Cicer arietinum	Chickpea	Version 1.0	28,269	LIS	Nature Biotechnology
P	Citrullus lanatus	Watermelon	Version 1.0	23,440	ICUGI	Nature Genetics
	Citrus sinensis	Sweet orange	Version 1.1	25,379	CSAP	Nature Genetics
	Cucumis sativus	Cucumber	Version 1.0	21,491	JGI	Nature Genetics
	Eucalyptus grandis	Eucalyptus	Version 1.1	36,376	JGI	Nature
*	Elaeis guineensis	Oil palm	Version 2.0	30,752	мров	Nature
Ø	Fragaria vesca	Strawberry	Version 1.1	32,831	PFR	Nature Genetics
	Glycine max	Soybean	Wm82.a2.v1	56,044	JGI	Nature

HOME	
DOT PLOT	7

VISTA

phytozome

PGDD

VISUALIZING SYNTENIC BLOCKS PGML HOMEPAGE A. chinensis (Kiwifruit) A. chinensis (Kiwifruit) A. lyrata (Lyrate rookoress) A. lyrata (Lyrate rookoress) HOME A. thaliana (Arabidopsis) A. thaliana (Arabidopsis) DOT PLOT A. trichopoda (Amborella) A. trichopoda (Amborella) B. distachyon (Purple false brome) B. distachyon (Purple false brome) LOCUS SEARCH 7 B. oleracea (Kale) B. oleracea (Kale) B. rapa (Chinese cabbage) B. rapa (Chinese cabbage) MAP VIEW VS B. vulgaris (Sugar beet) B. vulgaris (Sugar beet) DOWNLOADS C. annuum (Not pepper) annuum (Not pepper) C. aristinum (Chickpea) C. arietinum (Chickpea) ABOUT C. cajan (Pigeonpea) C. cajan (Pigeonpea) C. lanatus (Watermelon) C. lanatus (Watermelon) CONTACT C. papaya (Papaya) C. papaya (Papaya) C. reinhardtii (Green algae) reinhardtii (Green algae) MCSCAN C. rubella (Capsella) C. rubella (Capsella) TOOLS FOR SYNTENY □ Ks filter: between 0.5 and 1.0 (use Ks button below to identify the range) CoGe Plot with base-pair distance (default: gene ranks) Show boundary lines - Minimum length of a scaffold to display 🔽 Mbp VISTA Reset IKs distribution Dotplot 20313 pairs of anchors plotted click on block to soom in phytozome Plaza CEnsembl Chr1 Chr2 abidops Chr3 Chr4 ~ Chr5 1 Lyrate rockcress

Application of Genome Alignment

- Identify SV among the genome
- chromosome rearrangement
- Syntenic orthologue
- Identify core genome and dispensable genome
- Find evolutionary footprints
- Coordinates lifting between Genome version

Identify SV among the genome

An Inversion on Chromosome 07 between Wild Soybean and Cultivated Soybean Genomes Is Associated with Soybean Domestication

chromosome rearrangement

Sturtevant D, Lu S, Zhou Z W, et al. The genome of jojoba (Simmondsia chinensis): A taxonomically isolated species that directs wax ester accumulation in its seeds[J]. Science Advances, 2020, 6(11): eaay3240

Syntenic orthologue

Syntenic genome alignment

Identify core genome and dispensable genome

10.1038/s41576-020-0210-7

Core and softcore genome

725 tomato accessions

(10.1038/s41588-019-0410-2)

- 2,898 soybean accessions WGS
- De Novo Genome Assembly and Annotation of 26 Soybean Accessions

(10.1016/j.cell.2020.05.023)

Correlation between the core genome and other genome features

Find evolutionary footprints

