
Orthology and Phylogeny
1. Prepare software and data files

1.1 Install the software "figtree" on your laptop.

Go to the web site: https://github.com/rambaut/figtree/releases . Download the software file
based on your system.

Windows users can download the file: FigTree.v1.4.4.zip, de-compress. To run the software,
double click the file "figtree.jar" located inside the lib directory. (Double click "figtree.exe" might
not work for some computers)

Mac users can download the file FigTree.v1.4.4.dmg. Double click to install.

1.2 Prepare the working directory on the Linux server.

The "cp -r" command would copy the whole directory of project3.

2. Construct the phylogeny using RAxML-ng

In this exercise, you will use RAxML-ng to build phylogenetic trees from two Multiple Sequence
Alignment (MSA) files. "prim.phy" is a PHYLIP formatted file of a primate gene (DNA sequences).
"leafy_align.fas" is a FASTA formatted file of a plant gene (protein sequences).

The raxml-ng is a tool with several different functions (Tutorial: https://www.preprints.org/manusc
ript/201905.0056/v1). We will use five of them in this exercise: "check", "search", "bootstrap",
"evaluate" and "support". To run the "check" function, for example, you need to use the
command "raxml-ng --check". Run "raxml-ng" without function name defaults to the "search"
function.

2.1 Verify the format and data consistency of the input files

RAxML-NG can read MSA files in FASTA, PHYLIP and CATG formats. The "check" function
automatically detect and verify the file formats.

mkdir /workdir/$USER

cp -r /shared_data/alignment2020/project3 /workdir/$USER/

cd /workdir/$USER/project3

add raxml-ng to the PATH

export PATH=/programs/raxml-ng_v1.0.1:$PATH

verify the prim.phy file with DNA sequences

raxml-ng --check --msa prim.phy --model GTR+G

verify the leafy_align.fas file with protein sequences

raxml-ng --check --msa leafy_align.fas --model LG+G4

af://n0
af://n2
https://github.com/rambaut/figtree/releases
af://n12
https://www.preprints.org/manuscript/201905.0056/v1

If you see the message "Alignment can be successfully read by RAxML-NG", your input files are ok.

2.2 Inferring ML trees

Run "raxml-ng search" and find the best ML tree.

Here you will use the GTR_GAMMA model for DNA sequences ("--model GTR+G") ;
"--msa": input MSA file;
"--prefix": prefix of output file names;
By default, it would perform 20 tree searches using 10 random and 10 parsimony-based
starting trees. While it is a reasonable choice for most practical cases, given enough
computing resources, you might want to increase the number of starting trees to explore the
tree space more thoroughly, e.g. with the parameter " --tree pars{25},rand{25} ". On the
other hand, you can do "raxml-ng --search1" to perform a quick-and-dirty search from a
single starting tree.

Out of the 20 trees, the best tree is saved to a file "A1.raxml.bestTree".

There is a log file named "A1.raxml.log", with likelihoods of all 20 trees. Use "grep" to extract the
20 "logLikelihood" values.

You should see output like:

[00:00:02] [worker #1] ML tree search #2, logLikelihood: -5708.924752
[00:00:02] [worker #0] ML tree search #1, logLikelihood: -5708.925657
[00:00:04] [worker #1] ML tree search #4, logLikelihood: -5708.933482
[00:00:05] [worker #0] ML tree search #3, logLikelihood: -5708.935278
[00:00:07] [worker #1] ML tree search #6, logLikelihood: -5708.939390
[00:00:07] [worker #0] ML tree search #5, logLikelihood: -5708.927252
[00:00:09] [worker #0] ML tree search #7, logLikelihood: -5708.948094
[00:00:09] [worker #1] ML tree search #8, logLikelihood: -5709.375515
[00:00:11] [worker #0] ML tree search #9, logLikelihood: -5709.364187
[00:00:12] [worker #1] ML tree search #10, logLikelihood: -5709.028093
[00:00:14] [worker #0] ML tree search #11, logLikelihood: -5709.017239
[00:00:14] [worker #1] ML tree search #12, logLikelihood: -5709.025309
[00:00:16] [worker #0] ML tree search #13, logLikelihood: -5709.020900
[00:00:16] [worker #1] ML tree search #14, logLikelihood: -5709.012512
[00:00:18] [worker #0] ML tree search #15, logLikelihood: -5709.019845
[00:00:18] [worker #1] ML tree search #16, logLikelihood: -5709.015344
[00:00:20] [worker #0] ML tree search #17, logLikelihood: -5709.034675
[00:00:20] [worker #1] ML tree search #18, logLikelihood: -5709.015198
[00:00:21] [worker #0] ML tree search #19, logLikelihood: -5709.015413
[00:00:22] [worker #1] ML tree search #20, logLikelihood: -5709.043286

Final LogLikelihood: -5708.924752

raxml-ng --threads 2 --msa prim.phy --model GTR+G --prefix A1

grep "logLikelihood:" A1.raxml.log

grep "Final" A1.raxml.log

The final LogLikelihood might be slightly different between different runs. That is because the
starting tree used by "search" function is randomly selected. If you fix the random number seed in
the command, e.g. "--seed 2". You would get same score between runs.

Next you will build a tree for leafy gene using the protein MSA file "leafy_align.fas". The model
used here is "LG+G4" (fixed empirical substitution matrix "LG", 4 discrete GAMMA categories).

2.3 Bootstrapping and branch support

In the previous step you generated ML trees from 20 distinct random starting trees, and output
the tree with the best likelihood. Now we will get Bootstrapping support values for the trees.

1. Run bootstrap on "prim.phy". By default setting, RAxML-NG employs MRE-based
bootstopping test to automatically determine the sufficient number of BS replicates.

2. Map bootstrap support values to the best ML tree.

After this step, you would see a tree file "C1.raxml.support", which is a tree file with bootstrapping
support values.

3. Follow the same procedure to do bootstrapping for leafy_align.fas.

2.4 Using "figtree" to visualize the trees

Use Filezilla to download the two tree files "C1.raxml.support" and "C2.raxml.support" to your
laptop. Start "figtree". Open the file "C1.raxml.support". When prompted for names for branches
and nodes, enter "BS".

raxml-ng --threads 2 --msa leafy_align.fas --model LG+G4 --prefix A2

grep "logLikelihood:" A2.raxml.log

grep "Final" A2.raxml.log

raxml-ng --bootstrap --threads 2 --msa prim.phy --model GTR+G --prefix B1

raxml-ng --support --tree A1.raxml.bestTree --bs-trees B1.raxml.bootstraps --

prefix C1

less C1.raxml.support

raxml-ng --bootstrap --threads 2 --msa leafy_align.fas --model LG+G4 --prefix

B2

raxml-ng --support --tree A2.raxml.bestTree --bs-trees B2.raxml.bootstraps --

prefix C2

less C2.raxml.support

After opening the file in "figtree", check the boxes for "Tip Label" and "Node Label". Expand "Tip
Label" and "Node Label" to change "font" and increase size as needed. Expand "Node Label",
select "BS" for "Display".

2.5 Combining search and bootstrapping in one command

In practice, we normally use the "--all" function to run raxml-ng, which combines the steps in 2.2 &
2.3 into a single command. The "--all" function is good for small to medium size data set. If you
are working with a very large data set, it would be better to run the two steps separately, so that
you can customize each step differently.

After this, you would get a tree file with bootstrapping support values: "D1.raxml.support".

2.6 Tree likelihood evaluation

"--evaluate" re-optimizes all branch lengths and model parameters without changing the tree
topology. This step is optional, as in most cases, we are more interested in tree topology than the
branch lengths.

Evaluate the likelihood of A1.raxml.bestTree under the following models: GTR+G, GTR+R4, GTR, JC
and JC+G.

raxml-ng --all --msa prim.phy --model GTR+G --prefix D1

Each "--evaluate" command would create 5 output files, including *.raxml.log, and
*.raxml.bestTree.

Use "grep" to extract the final likelihood scores from log files produced with the five different
models:

Which model should be preferred? Compare likelihoods and AIC/AICc/BIC scores (lower=better).

raxml-ng --evaluate --msa prim.phy --tree A1.raxml.bestTree --model GTR+G --

prefix E_GTRG

raxml-ng --evaluate --msa prim.phy --tree A1.raxml.bestTree --model GTR+R4 --

prefix E_GTRR4

raxml-ng --evaluate --msa prim.phy --tree A1.raxml.bestTree --model GTR --prefix

E_GTR

raxml-ng --evaluate --msa prim.phy --tree A1.raxml.bestTree --model JC --prefix

E_JC

raxml-ng --evaluate --msa prim.phy --tree A1.raxml.bestTree --model JC+G --

prefix E_JCG

ls -lrt

grep "Final" E*.raxml.log

grep "AIC score" E*.raxml.log

2.7 Using modeltest-ng to find the best model

It is always each to determine best model to use. The "modeltest-ng" tool can be used to estimate
the best model to use, it also provides you with the actual command to run "raxml-ng search".

When you work on real projects, please check the BioHPC software page (https://biohpc.corn
ell.edu/lab/userguide.aspx?a=software&i=794#c) to run the latest version. The newer version
only works on AVX2 CPUs.

Based on the command provided by modeltest-ng output, now you can run raxml-ng as:

3. Build NJ tree using vcf file

VCF (https://en.wikipedia.org/wiki/Variant_Call_Format) is a file format commonly used for SNP
genotyping results. In this exercise, you will use Tassel to build a Neighbor-Joining tree (NJ) from a
VCF file. Tassel (https://www.maizegenetics.net/tassel) is a very popular genetics software,
developed by Ed Buckler lab here at Cornell. You can run Tassel either as a GUI software on your
laptop, or as a command-line tool on the server. In this exercise, you will run the command lines
on the Linux server.

The parameters:

-Xmx5g: specify the maximum memory size for Java;

-treeSaveDistance false: because we do not supply pre-calculated distance matrix;

-vcf: input vcf file name;

-tree Neighbor: neighbor joining tree;

-exportType Text: output newick format

/programs/modeltest-0.1.5/modeltest-ng -i leafy_align.fas -d aa

raxml-ng --msa leafy_align.fas --model JTT+G4+F --prefix leafy_aa

https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=794#c
af://n97
https://en.wikipedia.org/wiki/Variant_Call_Format
https://www.maizegenetics.net/tassel

Download the tree file "tree.nj.nwk" to your laptop and open in "figtree". To get the best view, you
will need to adjust "Expansion" and "Zoom".

In practice, when you work with VCF files, it is always a good idea to pre-filter the VCF file. (It is the
same concept as running "Gblocks" on MSA files, to remove the un-reliable sites). You can use
"Tassel", "VCFtools" or "BCFtools" to do the filtering. Commonly used filters including: missing
data, allele frequency. You can also use more sophisticated filters like "segregation pattern", "LD",
"read depth", et al.

4. Run Orthofinder to identify orthologous genes

Orthofinder is a tool to identify orthologous genes from multiple genomes. In this exercise, you
will run the software with sequences from four different E. coli strains. Once you have the
ortholog gene groups, you can run MSA software on each ortholog group, followed by Raxml-ng
to infer phylogeny.

4.1 Examine and pre-process the input files.

At the beginning of this exercise, you have copied the four E. coli fasta files into your working
directory. The files should be under the directory /workdir/$USER/project3/faa, named
"*_translated_cds.faa.gz".

Use the command "zcat file_name.gz | head -n 40" to check the first 40 lines of a ".gz" file. Use
the command "wc -l" to count the number of genes per strain.

The protein sequences in the input files have very long titles, like
">lcl|NC_000913.3_prot_NP_414548.1_7 [gene=yaaJ] [locus_tag=b0007]
[db_xref=UniProtKB/Swiss-Prot:P30143] [protein=putative transporter YaaJ]
[protein_id=NP_414548.1] [location=complement(6529..7959)] [gbkey=CDS]".

#export the tree as a human-readable text file

/programs/tassel-5-standalone/run_pipeline.pl -Xmx5g -vcf mdp_genotype.vcf -tree

Neighbor -treeSaveDistance false -export tree.nj.txt

less tree.nj.txt

#export the tree as a newick file

/programs/tassel-5-standalone/run_pipeline.pl -Xmx5g -vcf mdp_genotype.vcf -tree

Neighbor -treeSaveDistance false -export tree.nj.nwk -exportType Text

less tree.nj.nwk

cd /workdir/$USER/project3/faa

ls -l

check the first 40 lines of the file

zcat GCF_000005845.2_ASM584v2_translated_cds.faa.gz | head -n 40

count the number of genes in the file

zcat GCF_000005845.2_ASM584v2_translated_cds.faa.gz | grep ">" |wc -l

af://n109

There are two potential problems with these sequence titles:

The titles are too long. Some MSA software cannot work with sequences with long titles;
Some software would not work with non-alphanumeric characters (except underscore "_");

It would be a good idea to simplify the sequence titles in the fasta files before running
Orthofinder. In Linux, the "sed" command can be used to replace text. In the following
commands, you will de-compress the original file with "zcat", pipe through two rounds of "sed",
and re-direct the output to new files named "strain*.faa".

I also like the sequence titles to start with strain names like "s1" "s2" "s3" "s4", so that in the MSA
results, you can easily tell from which strain each sequence comes from. As each input files are
different, you will need to use the "sed" command creatively to modify the sequence titles.

sed "s/ .*//" : In each line, remove everything after the first "space" character.
sed "s/.*/>s1/": the pattern would replace ">lcl|NC_000913.3_prot_NP_414548.1" with
">s1_".

After these steps, you will have 4 fasta files with short sequence titles: strain1.faa, strain2.faa,
strain3.faa and strain4.faa

Use "grep" to check the sequence titles in the cleaned fasta files:

4.2 Run Orthofinder

Unfortunately, you will not be able to run Orthofinder using the training computers. The software
requires CPUs that support AVX2. In BioHPC system, it only works on medium or large memory
gen2 computers.

zcat GCF_000005845.2_ASM584v2_translated_cds.faa.gz | \

 sed "s/ .*//" | \

 sed "s/.*_/>s1_/" \

 > strain1.faa

zcat GCF_003018555.1_ASM301855v1_translated_cds.faa.gz | \

 sed "s/ .*//" | \

 sed "s/.*_/>s2_/" \

 > strain2.faa

zcat GCF_003112165.1_ASM311216v1_translated_cds.faa.gz | \

 sed "s/ .*//" | \

 sed "s/.*_/>s3_/" \

 > strain3.faa

zcat GCF_006874785.1_ASM687478v1_translated_cds.faa.gz | \

 sed "s/ .*//" | \

 sed "s/.*_/>s4_/" \

 > strain4.faa

grep ">" strain1.faa

grep ">" strain2.faa

grep ">" strain3.faa

grep ">" strain4.faa

The step-by-step instructions of running Orthofinder on BioHPC can be found on this page: http
s://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=629#c . It is very straight forward. The
software reads in a directory of protein fasta files, and the output is a directory with many files.
You will examine the output files in the next step.

4.3 Examine the output files

The output of Orthofinder should be under the working directory /workdir/$USER/project3/. The
file is "Results_Oct06.tar.gz".

De-compress the Results_Oct04.tar.gz file:

You would find several sub-directories in the Orthofinder results.

First, you will check the files under the directory "Orthogroups".

Orthogroups.GeneCount.tsv: A tab separated text file. Each row contains the genes
belonging to a single ortholog group. The genes from each ortholog group are organized into
columns, one per strain.

There is a total of 5411 ortholog groups in the four E. coli strains. Among these groups, 3557 of
the groups have one gene per strain, which is ideal for building phylogenetic tree. The ID of these
"one-gene-per-strain" ortholog groups are stored in the file
"Orthogroups_SingleCopyOrthologues.txt".

Orthogroups.txt & Orthogroups.tsv: These two files have the names of each gene in the
ortholog groups. The two files contain the same information but in different file formats.

Orthogroups_UnassignedGenes.tsv: Singleton genes that were not assigned to any groups

cd /workdir/$USER/project3/

tar xvfz Results_Oct06.tar.gz

cd Results_Oct06

ls -l

cd Orthogroups

check the content of the file

less Orthogroups.GeneCount.tsv

count the total number of groups

wc -l Orthogroups.GeneCount.tsv

count the number of groups with one gene per strain

awk '{if (($2==1)&&($3==1)&&($4==1)&&($5==1)) print}' Orthogroups.GeneCount.tsv |

wc -l

less Orthogroups.txt

less Orthogroups.tsv

https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=629#c

Next let's check the directory Orthogroup_Sequences.

In this directory, you would find 6423 fasta files. Each file contains sequences for an ortholog
group. These files can be used to run MSA software.

Last you can check the directory Comparative_Genomics_Statistics, which includes summary
reports of the run.

4.4 Run MSA for all single copy genes

Orthofinder output a directory called "Single_Copy_Orthologue_Sequences" which contains fasta
files for all single copy genes that are present in every species. These sequences are ideal for
construction of a species tree. In this exercise, you will run MSA & Gblocks on each one of the
FASTA files.

First you need to create a batch script to process all files in the directory. Linux command "xargs"
can be used for this purpose.

Run the batch script in parallel to take advantage of multiple CPU cores. You will use the "GNU
parallel command" to run the batch script, set "-j 2" so that 2 jobs would run simultaneously. This
would take a while, run it in "screen".

 After it is done, you should see a set of new files: aln_*.fa-gb. These are the cleaned MSA files.

less Orthogroups_UnassignedGenes.tsv

cd /workdir/$USER/project3/Results_Oct06/Orthogroup_Sequences

ls -l

cd /workdir/$USER/project3/Results_Oct06/Comparative_Genomics_Statistics

less Statistics_Overall.tsv

cd /workdir/$USER/project3/Results_Oct06/Single_Copy_Orthologue_Sequences

ls *.fa | xargs -I {} echo "mafft --thread 1 --amino --inputorder --quiet {} >

aln_{} ; Gblocks aln_{} -t=p -b5=h" > msa.batch

less msa.batch

screen

export PATH=/programs/mafft/bin:$PATH

export PATH=/programs/Gblocks_0.91b:$PATH

parallel -j 2 < msa.batch

4.5 Create a species tree from combined MSA of individual ortholog groups

Here you will concatenate all cleaned MSA files into one single fasta file, and create a species tree
using raxml-ng .

concate_msa.py: a Python script to concatenate the MSA files of each ortholog groups, and output
a single file merged.fasta. (If you will use this script concate_msa.py for your own data, you
need to make sure that your files are: 1) In the same order of species, make sure to use " --
inputorder" when running mafft or other MSA software to keep the order; 2) Only work
with FASTA format.)

The final output is a species tree: merged.raxml.bestTree.

ls -l *gb

less aln_OG0001399.fa-gb

mkdir MSAdir

mv *gb MSAdir/

python /shared_data/alignment2020/project3/concate_msa.py MSAdir

raxml-ng --threads 2 --msa merged.fasta --model LG+G4 --prefix merged

	Orthology and Phylogeny
	1. Prepare software and data files
	2. Construct the phylogeny using RAxML-ng
	3. Build NJ tree using vcf file
	4. Run Orthofinder to identify orthologous genes

