
Exercise 1. Using MAKER for Genome Annotation

If you are following this guide for your own research project, please make the following
modifications:

1. In this exercise, SNAP was used for gene prediction. When you are working on your own
genome, we recommend that you use Augustus. The instructions for using Augustus is in
appendix.

2. In the exercise, you will be using 2 CPU cores. When you are working on your own genome,
you should use all CPU cores on your machine. When you run the command:
"/usr/local/mpich/bin/mpiexec -n 2", replace 2 with number of cores available on your
machine.

3. The steps for Repeatmodeler and Repeatmasker are optional in the exercise, but required
when you work on your own genome.

The example here is from a workshop by Mark Yandell Lab (http://www.yandell-lab.org/)

Further readings:

1. Yandel Lab Workshop. http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_T
utorial_for_WGS_Assembly_and_Annotation_Winter_School_2018 .

2. MAKER protocol from Yandell Lab. It is good reference. https://www.ncbi.nlm.nih.gov/pmc/ar
ticles/PMC4286374/

3. Tutorial for training Augustus https://vcru.wisc.edu/simonlab/bioinformatics/programs/aug
ustus/docs/tutorial2015/training.html

4. Maker control file explained: http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/Th
e_MAKER_control_files_explained

Part 1. Prepare working directory.

1. Copy the data file from /shared_data/annotation2018/ into /workdir/$USER, and de-
compress the file. You will also copy the maker software directory to /workdir/USER. The
maker software directory including a large sequence repeats database. It would be good to
put it under /workdir which is on local hard drive.

Part 2. Maker round 1 - Map known genes to the genome

Run everything in "screen".

Round 1 includes two steps:

Repeat masking;

mkdir /workdir/$USER

mkdir /workdir/$USER/tmp

cd /workdir/$USER

cp /shared_data/annotation2019/maker_tutorial.tgz ./

cp -rH /programs/maker/ ./

cp -rH /programs/RepeatMasker ./

tar -zxf maker_tutorial.tgz

cd maker_tutorial

ls -1

af://n159
http://www.yandell-lab.org/
http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/MAKER_Tutorial_for_WGS_Assembly_and_Annotation_Winter_School_2018
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286374/
https://vcru.wisc.edu/simonlab/bioinformatics/programs/augustus/docs/tutorial2015/training.html
http://weatherby.genetics.utah.edu/MAKER/wiki/index.php/The_MAKER_control_files_explained
af://n181
af://n186

Align known transcriptome/protein sequences to the genome;

1. [Optional] Build a custom repeat database. This step is optional for this exercise, as it is a
very small genome, it is ok without repeat masking. When you work on a real project, you
can either download a database from RepBase (https://www.girinst.org/repbase/, license
required), or you can build a custom repeat database with your genome sequence.
RepeatModeler is a software for building custom databases. The commands for building a
repeat database are provided here.

At the end of run, you would find a file "pyu-families.fa". This is the file you can supply to "rmlib="
in the control file.

2. Set environment to run Maker and create MAKER control files.

Every steps in Maker are specified by the Maker control files. The command "maker -CTL" will
create three control files: maker_bopts.ctl, maker_exe.ctl, maker_opts.ctl.by.

3. Modify the control file maker_opts.ctl.

Open the maker_opts.ctl file in a text editor (e.g. Notepad++ on Windows, BBEdit on Mac, or vi
on Linux). Modify the following values. Put the modified file in the same directory
“example_02_abinitio”.

The modified maker_opts.ctl file instructs MAKER to do two things.

a) Run RepeatMasker.

cd example_02_abinitio

export PATH=/programs/RepeatModeler-2.0:$PATH

BuildDatabase -name pyu pyu_contig.fasta

RepeatModeler -pa 4 -database pyu -LTRStruct >& repeatmodeler.log

export

PATH=/workdir/$USER/maker/bin:/workdir/$USER/RepeatMasker:/programs/snap:$PATH

export ZOE=/programs/snap/Zoe

export LD_LIBRARY_PATH=/programs/boost_1_62_0/lib

cd /workdir/$USER/maker_tutorial/example_02_abinitio

maker -CTL

genome=pyu_contig.fasta

est=pyu_est.fasta

protein=sp_protein.fasta

model_org=simple

rmlib= #fasta file of your repeat sequence from RepeatModeler. Leave blank to

skip.

softmask=1

est2genome=1

protein2genome=1

TMP=/workdir/$USER/tmp #important for big genome, as the default /tmp is too

small

https://www.girinst.org/repbase/

The line “model_org=simple” tells RepeatMasker to mask the low complexity sequence (e.g.
“AAAAAAAAAAAAA”.
The line “rmlib=” sets "rmlib" to null, which tells RepeatMasker not to mask repeat
sequences like transposon elements. If you have a repeat fasta file (e.g. output from
RepeatModeler) that you need to mask, put the fasta file name next to “rmlib=”
The line “softmask=1” tells RepeatMasker to do soft-masking which converts repeats to
lower case, instead of hard-masking which converts repeats to “N”. "Soft-masking" is
important so that short repeat sequences within genes can still be annotated as part of
gene.
If you run RepeatMasker separately, as described in https://gist.github.com/darencard/bb10
01ac1532dd4225b030cf0cd61ce2 , you should leave rmlib to null, but set rm_gff to a repeat
gff file.

b) Align the transcript sequences from the pyu_est.fasta file and protein sequences from the
sp_protein.fasta file to the genome and infer evidence supported gene model.

The lines “est2genome=1” and “protein2genome=1” tell MAKER to align the transcript
sequences from the pyu_est.fasta file and protein sequences from the sp_protein.fasta file
to the genome. These two files are used to define evidence supported gene model.

The lines “est=pyu_est.fasta" and "protein=sp_protein.fasta" specify the fasta file names of
the EST and protein sequences. In general, the EST sequence file contains the assembled
transcriptome from RNA-seq data. The protein sequence file include proteins from closely
related species or swiss-prot. If you have multiple protein or EST files, separate file names
with ",".

4. [Do it at home] Execute repeat masking and alignments. This step takes an hour. Run it in
"screen". In the command: "mpiexec -n 2 " means that you will parallelize Maker using MPI,
and use two threads at a time. When you work on a real project, it will take much longer,
and you should increase this "-n" setting to the number of cores.

Set Maker environment if it is new session:

Execute the commands:

After it is done, you can check the log1 file. You should see a sentence: Maker is now finished!!!

Part 3. Maker round 2 - Gene prediction using SNAP

1. Train a SNAP gene model.

SNAP is software to do ab initio gene prediction from a genome. In order to do gene prediction
with SNAP, you will first train a SNAP model with alignment results produced in the previous
step.

export

PATH=/workdir/$USER/maker/bin:/workdir/$USER/RepeatMasker:/programs/snap:$PATH

export ZOE=/programs/snap/Zoe

export LD_LIBRARY_PATH=/programs/boost_1_62_0/lib

cd /workdir/qisun/maker_tutorial/example_02_abinitio

/usr/local/mpich/bin/mpiexec -n 2 maker -base pyu_rnd1 >& log1 &

https://gist.github.com/darencard/bb1001ac1532dd4225b030cf0cd61ce2
af://n237

If you skipped the step "4. [Do it at home] Execute Maker round 1", you can copy the result files
from this directory: /shared_data/annotation2019/

Set Maker environment if it is new session:

The following commands will convert the MAKER round 1 results to input files for building a SNAP
mode.

The “-l 50 -x 0.5” parameter in maker2zff commands specify that only gene models with AED
score>0.5 and protein length>50 are used for building models. You will find two new files:
genome.ann and genome.dna.

Now you will run the following commands to train SNAP. The basic steps for training SNAP are
first to filter the input gene models, then capture genomic sequence immediately surrounding
each model locus, and finally uses those captured segments to produce the HMM. You can
explore the internal SNAP documentation for more details if you wish.

After this, you will find two new files in the directory example_02_abinitio:
pyu_rnd1.all.gff: A gff file from round 1, which is evidence based genes.
pyu1.hmm: A hidden markov model trained from evidence based genes.

2. Use SNAP to predict genes.

Modify directly on the maker_opts.ctl file that you have modified previously.

Before doing that, you might want to save a backup copy of maker_opts.ctl for round 1.

Now modify the following values in the file: maker_opts.ctl

cd /workdir/qisun/maker_tutorial/example_02_abinitio

cp /shared_data/annotation2019/pyu_rnd1.maker.output.tgz ./

tar xvfz pyu_rnd1.maker.output.tgz

export

PATH=/workdir/$USER/maker/bin:/workdir/$USER/RepeatMasker:/programs/snap:$PATH

export ZOE=/programs/snap/Zoe

export LD_LIBRARY_PATH=/programs/boost_1_62_0/lib

mkdir snap1

cd snap1

gff3_merge -d ../pyu_rnd1.maker.output/pyu_rnd1_master_datastore_index.log

maker2zff -l 50 -x 0.5 pyu_rnd1.all.gff

fathom -categorize 1000 genome.ann genome.dna

fathom -export 1000 -plus uni.ann uni.dna

forge export.ann export.dna

hmm-assembler.pl pyu . > ../pyu1.hmm

mv pyu_rnd1.all.gff ../

cd ..

cp maker_opts.ctl maker_opts.ctl_backup_rnd1

Run maker with the new control file. This step takes a few minutes. (A real project could take
hours to finish). You will use the option “-base pyu_rnd2” so that the results will be written into a
new directory "pyu_rnd2".

Again, make sure the log2 file ends with "Maker is now finished!!!".

Part 4. Maker round 3 - Retrain SNAP model and do another round of
SNAP gene prediction

You might need to run two or three rounds of SNAP. So you will repeat Part 2 again. Make sure
you will replace snap1 to snap2, so that you would not over-write previous round.

1. First train a new SNAP model.

2. Use SNAP to predict genes.

Modify directly on the maker_opts.ctl file that you have modified previously.

Before doing that, you might want to save a backup copy of maker_opts.ctl for round 2.

Now modify the following values in the file: maker_opts.ctl

maker_gff= pyu_rnd1.all.gff

est_pass=1 # use est alignment from round 1

protein_pass=1 #use protein alignment from round 1

rm_pass=1 # use repeats in the gff file

snaphmm=pyu1.hmm

est= # remove est file, do not run EST blast again

protein= # remove protein file, do not run blast again

model_org= #remove repeat mask model, so not running RM again

rmlib= # not running repeat masking again

repeat_protein= #not running repeat masking again

est2genome=0 # do not do EST evidence based gene model

protein2genome=0 # do not do protein based gene model.

pred_stats=1 #report AED stats

alt_splice=0 # 0: keep one isoform per gene; 1: identify splicing variants of

the same gene

keep_preds=1 # keep genes even without evidence support, set to 0 if no

/usr/local/mpich/bin/mpiexec -n 2 maker -base pyu_rnd2 >& log2 &

mkdir snap2

cd snap2

gff3_merge -d ../pyu_rnd2.maker.output/pyu_rnd2_master_datastore_index.log

maker2zff -l 50 -x 0.5 pyu_rnd2.all.gff

fathom -categorize 1000 genome.ann genome.dna

fathom -export 1000 -plus uni.ann uni.dna

forge export.ann export.dna

hmm-assembler.pl pyu . > ../pyu2.hmm

mv pyu_rnd2.all.gff ..

cd ..

cp maker_opts.ctl maker_opts.ctl_backup_rnd2

af://n265

Run Maker:

Use the following command to create the final merged gff file. The “-n” option would produce a
gff file without genome sequences:

After this, you will get a new gff3 file: pyu_rnd3.noseq.gff, and protein and transcript fasta files.

3. Generate AED plots.

You can use Excel or R to plot the second column of the AED_rnd2 and AED_rnd3 files, and use
the first column as the X-axis value. The X-axis label is "AED", and Y-axis label is "Cumulative
Fraction of Annotations "

Part 5. Visualize the gff file in IGV

You can load the gff file into IGV or JBrowse, together with RNA-seq read alignment bam files.
For instructions of running IGV and loading the annotation gff file, you can read under "part 4" of
this document:

 http://biohpc.cornell.edu/doc/RNA-Seq-2019-exercise1.pdf

Appendix: Training Augustus model

Run Part 1 & 2.

In the same screen session, set up Augustus environment.

The following commands will convert the MAKER round 1 results to input files for building a SNAP
mode.

maker_gff=pyu_rnd2.all.gff

snaphmm=pyu2.hmm

/usr/local/mpich/bin/mpiexec -n 2 maker -base pyu_rnd3 >& log3 &

gff3_merge -n -d

pyu_rnd3.maker.output/pyu_rnd3_master_datastore_index.log>pyu_rnd3.noseq.gff

fasta_merge -d pyu_rnd3.maker.output/pyu_rnd3_master_datastore_index.log

/programs/maker/AED_cdf_generator.pl -b 0.025 pyu_rnd2.all.gff > AED_rnd2

/programs/maker/AED_cdf_generator.pl -b 0.025 pyu_rnd3.noseq.gff > AED_rnd3

cp -r /programs/Augustus-3.3.3/config/ /workdir/$USER/augustus_config

export LD_LIBRARY_PATH=/programs/boost_1_62_0/lib

export AUGUSTUS_CONFIG_PATH=/workdir/$USER/augustus_config/

export LD_LIBRARY_PATH=/programs/boost_1_62_0/lib

export LC_ALL=en_US.utf-8

export LANG=en_US.utf-8

export PATH=/programs/augustus/bin:/programs/augustus/scripts:$PATH

af://n289
http://biohpc.cornell.edu/doc/RNA-Seq-2019-exercise1.pdf
af://n293

After this step, you will see a new gff file pyu_rnd1.all.gff from round 1.

mkdir augustus1

cd augustus1

gff3_merge -d ../pyu_rnd1.maker.output/pyu_rnd1_master_datastore_index.log

filter gff file, only keep maker annotation in the filtered gff file

awk '{if ($2=="maker") print }' pyu_rnd1.all.gff > maker_rnd1.gff

##convert the maker gff and fasta file into a Genbank formated file named pyu.gb

##We keep 2000 bp up- and down-stream of each gene for training the models

gff2gbSmallDNA.pl maker_rnd1.gff pyu_contig.fasta 2000 pyu.gb

check number of genes in training set

grep -c LOCUS pyu.gb

train model

first create a new Augustus species named

new_species.pl --species=pyu

initial training

etraining --species=pyu pyu.gb

the initial model should be in the directory

ls -ort $AUGUSTUS_CONFIG_PATH/species/pyu

##create a smaller test set for evaluation before and after optimization. Name

the evaluation set pyu.gb.evaluation.

randomSplit.pl pyu.gb 200

mv pyu.gb.test pyu.gb.evaluation

use the first model to predict the genes in the test set, and check the

results

augustus --species=pyu pyu.gb.evaluation >& first_evaluate.out

grep -A 22 Evaluation first_evaluate.out

optimize the model. this step is very time consuming. It could take days. To

speed things up, you can create a smaller test set

the following step will create a test and training sets. the test set has 1000

genes. This test set will be splitted into 24 kfolds for optimization (the kfold

can be set up to 48, with processed with one cpu core per kfold. Kfold must be

same number as as cpus). The training, prediction and evaluation will be

performed on each bucket in parallel (training on hh.gb.train+each bucket, then

comparing each bucket with the union of the rest). By default, 5 rounds of

optimization. As optimization for large genome could take days, I changed it to

3 here.

randomSplit.pl pyu.gb 1000

optimize_augustus.pl --species=hh --kfold=24 --cpus=24 --rounds=3 --

onlytrain=pyu.gb.train pyu.gb.test >& log &

#train again after optimization

etraining --species=pyu pyu.gb

use the optionized model to evaluate again, and check the results

After these steps, the species model is in the directory
/workdir/$USER/augustus_config/species/pyu.

Now modify the following values in the file: maker_opts.ctl

Run maker with the new augustus model

Create gff and fasta output files:

Use the following command to create the final merged gff file. The “-n” option would produce a
gff file without genome sequences:

After this, you will get a new gff3 file: pyu_rnd3.noseq.gff, and protein and transcript fasta files.

To make the gene names shorter, use the following commands:

augustus --species=pyu pyu.gb.evaluation >& second_evaluate.out

grep -A 22 Evaluation second_evaluate.out

maker_gff= pyu_rnd1.all.gff

est_pass=1 # use est alignment from round 1

protein_pass=1 #use protein alignment from round 1

rm_pass=1 # use repeats in the gff file

augustus_species=pyu # augustus species model you just built

est= # remove est file, do not run EST blast again

protein= # remove protein file, do not run blast again

model_org= #remove repeat mask model, so not running RM again

rmlib= # not running repeat masking again

repeat_protein= #not running repeat masking again

est2genome=0 # do not do EST evidence based gene model

protein2genome=0 # do not do protein based gene model.

pred_stats=1 #report AED stats

alt_splice=0 # 0: keep one isoform per gene; 1: identify splicing variants of

the same gene

keep_preds=1 # keep genes even without evidence support, set to 0 if no

/usr/local/mpich/bin/mpiexec -n 2 maker -base pyu_rnd3 >& log3 &

gff3_merge -n -d

pyu_rnd3.maker.output/pyu_rnd3_master_datastore_index.log>pyu_rnd3.noseq.gff

fasta_merge -d pyu_rnd3.maker.output/pyu_rnd3_master_datastore_index.log

maker_map_ids --prefix pyu_ --justify 8 --iterate 1 pyu_rnd3.all.gff > id_map

map_gff_ids id_map pyu_rnd3.all.gff

map_fasta_ids id_map pyu_rnd3.all.maker.proteins.fasta

map_fasta_ids id_map pyu_rnd3.all.maker.transcripts.fasta

	Exercise 1. Using MAKER for Genome Annotation
	Part 1. Prepare working directory.
	Part 2. Maker round 1 - Map known genes to the genome
	Part 3. Maker round 2 - Gene prediction using SNAP
	Part 4. Maker round 3 - Retrain SNAP model and do another round of SNAP gene prediction
	Part 5. Visualize the gff file in IGV
	Appendix: Training Augustus model

