De novo whole genome assembly

Qi Sun

Bioinformatics Facility Cornell University

The Concept of Reference Genome

>personA_chr1-paternal

>personA_chr1-maternal

Reference	ce	
	GATGGGATTGGGGTT	TGAGCTTCTCAAAAGTC
personA	۸	T/A
personB		T/T
personC	2	T/A

>personB_chr1-paternal

>personB_chr1-maternal

personDT/A.....

Reference genome is a mosaic of paternal and maternal genomes from one individual

Reference

What individual to use as the reference?

Cornell professor Dr. Doug Antczak with Twilight, DNA donor for the horse reference genome.

The human reference is a composite genome from multiple anonymous individuals

Sequencing platforms

o Illumina

Long reads (>10kb)

○ PacBio

10% Error

Oxford Nanopore

0.1% Error

Steps in genome assembly

Contiging

Assemble reads into longer pieces called contigs

Raw sequencing reads

Polishing & Scaffolding

Error correction and connecting neighboring pieces

Two assembly strategies

Long reads	Short reads
overlap-layout-consensus	de-bruijn-graph
Read1	sequence ATGGAAGTCGCGGAATC 7mers ATGGAAGT GGAAGTC GGAAGTCG GAAGTCGC AGTCGCGG GTCGCCGG TCGCGGAA GCGGAAT CGGAATC
Assembly	de Bruijn graph ATGGAAG + TGGAAGT + GGAAGTC + GAAGTCG + AAGTCGC + AGTCGCG GTCGCCG + TCGCGGA + CGCGGAA + GCGGAAT + CGGAATC

source: http://www.homolog.us/Tutorials/index.php

Canu, Falson, Flye, et al.

Spades, Abyss, et al

ATGGAAGTCGCGGAATC

Short kmers are more likely to branch

Genome: GGATGGAAGTCG...... CGATGGAAGGAT

(black regions are identical sequence)

Longer **kmer** = Lower **kmer** coverage

Read depth vs Kmer depth

Read depth: number of reads at a genome position

Kmer depth: number of occurrence of each kmer

For de-bruijn-graph, it is kmer depth that matters.

Longer the kmer, Lower the kmer depth

Kmer depth =3

Kmer depth =1

de-bruijn-graph for contiging short reads

N50 with different kmer (kb)

Kmer size	75	95	105	115
contig N50	268	476	476	268
scaffold N50	543	543	543	268
Read length: 199	hn Coverage.	~100 x		

SPAdes: use a series of kmers.

Branching in the de-bruijn-graph and how to solve

Tips, bubbles and crosslinks

Deal with sequencing errors and repetitive regions

1. Sequencing errors

- Remove low depth kmers in a bubble;
- Too long kmers would cause coverage problem;

2. Repeatitive regions

• Longer kmers

Tiny repeat: Separate the path

Break boundary between low and high copy regions

Genome assembly software gives us a graph, then algorithmically identify a path in the graph

https://en.wikipedia.org/wiki/Velvet assembler

Common errors:

- Collapsed paralogous genes;
- Chimeric contigs/scaffolds;

Assembly software is tuned to collapse allelic genes, but not paralogous genes;

Kmer distribution can be used to estimate genome size

Sequencing data: 20 GB Coverage: 10x Genome size = 2GB

Kmer coverage distribution

Estimate genome size based on kmer distribution

75 mer Read depth = 3 Kmer depth = 2

Step 1: convert read depth to kmer depth

 $N = M^* L/(L-K+1)$

M: kmer depth = 112 L: read length = 101 bp K: Kmer size =21 bp N: read depth =140

Step 2: genome size is total sequenced base pairs devided by read depth

Genome size = T/N

T: total base pairs = 0.505 gb N: read depth = 140 Genome size: 3.6 mb

Software to estimate genome size: ErrorCorrectReads.pl (from ALLPATHS-LG)

ErrorCorrectReads.pl \ PAIRED_READS_A_IN=R1.fastq.gz \ PAIRED_READS_B_IN=R2.fastq.gz \ KEEP_KMER_SPECTRA=1 \ PHRED_ENCODING=33 \ PLOIDY=1 \ READS_OUT=corrected_out \ >& report.log &

Polishing with pilon

Align raw reads back to the assembly and identify discrepancies Pilon protocol

Evaluate alignment pileups

TAATGGGGGCGGTGCCATATCATGAGA

TAATGGGGGCGGTGCCATATCATGAGA TAATGGGGG*CGGTGCCATATCTAGAGA TAATGGGGGCGGTGCCATATCATGAGA

Scan read coverage and alignment discrepancies

SPAdes has a "--careful" option that does error correction with read alignment

Scaffolding contigs

Technologies

Long-read: PacBio or Nanopore

Short range

Long range

- **BioNano:** Optical Mapping:
- Hi-C: Dovetail; Phase Genomics

Scaffolding strategies: Physical maps

1.Trim adapters: Trimmomatic

2.Contiging: SPAdes

3.Polishing: (included in SPAdes with –careful option)

4.Scaffolding: PBJelly. (If you have both long and short reads, it is better to run hybrid assembly tool, e.g MaSuRCA or SPAdes)

5.Assessment: QUAST, BUSCO

Long reads

overlap-layout-consensus

- PacBio
- Oxford Nanopore

Long-read Sequencing Platform: PacBio SMRT

2017 2018 Read lengths >20 kb Half of data in reads: 300,000 35,000 >45 kb Data per SMRT Cell: 5-8 Gb 250,000 30,000 Half of data in reads: >20 kb Top 5% of reads: 25,000 200,000 >150 kb Reads 20,000 Top 5% of reads: >35 kb Reads 150,000 15,000 Maximum read length: >60 Longest read lengths: 100,000 10,000 >200 kb 5,000 50,000 0 0 10,000 20,000 30,000 40,000 60,000 70.0 50,000 0 150.000 0 50.000 100,000 200.000 250.000 Read Length Read Length

From PacBio web site

DNA fragment length

Sequencing read length

DNA fragment

1. Run basecaller

- 2. Assembly with Canu
- 3. Polishing
- 4. Assessment
- 5. Scaffolding

Raw signal data => FASTQ

 Run Nanopore basecaller "guppy" on a computer with good GPU.
https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=653 #c

- 1. Run basecaller
- 2. Assembly with Canu
- 3. Polishing
- 4. Assessment
- 5. Scaffolding

1. Correct sequencing errors

- All-versus-all alignment
- Correct errors through overlaps

1. Trim reads

 Trim regions of reads not supported by other reads

2. Assemble

Contiging corrected reads

- 1. Run basecaller
- 2. Assembly with Canu
- 3. Polishing
- 4. Assessment
- 5. Scaffolding

Default setting:

rawErrorRate (raw reads) PacBio: 0.300 Nanopore: 0.500

correctedErrorRate (corrected reads) PacBio: 0.045 Nanopore: 0.144 (decrease with higher coverage)

1. Run basecaller

3. Polishing

4. Assessment

5. Scaffolding

Polishing tools
Alignment: minimap2 for long reads; bwa for short reads.
Arrow: polish with pacbio reads
Nanopolish: polish with nanopore reads
Pilon: polish with Illumina reads (optional for PacBio assembly, needed for Nanopore assembly.

- 1. Run basecaller
- 2. Assembly with Canu
- 3. Polishing
- 4. Assessment
- 5. Scaffolding

Canu	Polishing with Pilon (Illumina, Nanopore or PacBio)
	frags illumina.bam
	nanopore np.bam
	pacbio pb.bam

- 1. Run basecaller
- 2. Assembly with Canu
- 3. Polishing
- 4. Assessment
- 5. Scaffolding

BUSCO: completeness

QUAST: length

- 1. Run basecaller
- 2. Assembly with Canu
- 3. Polishing with Pilon
- 4. Assessment
- 5. Scaffolding

BioNano: optical map

Hi-C: physical map from chromatin structure

Why hybrid assembly (PacBio + Illumina)

If you have lots of money,

50 - 100x PacBio

If you have very little money,

50 -100x Illumina

If you are in the middle,

- 50 -100x Illumina
- 10x PacBio

Why hybrid assembly (PacBio + Illumina)

Medium/large genomes

50 - 100x PacBio

Bacterial/fungal genomes

50 -100x Illumina

Extra large genomes

- 50 -100x Illumina
- 10x PacBio

MaCuRCA

Zimin, Aleksey V. et al. (2017) Genome research 27 5: 787-792.

Assessment of assemblies

Completeness

- Estimated genome size vs assembly size;
- Gene space completeness: BUSCO
- Contig/scaffold length
 - N50
- Contig/scaffold quality
 - Chimeric contigs/scaffolds;
 - Collapsed paralogs;

BUSCO

Evaluate the completeness in Genespace

BUSCO Lineages

ArthropodsVertebratesFungiBacteriaMetazoansEkaryotes Plants

BUSCO gene sets:

Present in at least 90% of the species in each lineage, single copy.

Evaluation of assembly quality

https://github.com/trinityrnaseq/trinityrnaseq/wiki/Transcriptome-Assembly-Quality-Assessment

BUSCO Score

https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=255#c

Evaluation of Genome assembly 1 Metrics for contig length

N50 and L50 *

N50 50% (base pairs) of the assemblies are contigs above this size.

L50 Number of contigs greater than the N50 length.

NG50 and LG50

N50 is calculated based on assembly size. NG50 is calculated based on estimated genome size.

Usage statistics of assembly software on BioHPC

	Usage	Short reads	Long reads	hybrid
SPAdes	60.31%	x		x
canu	17.93%		x	
MaSuRCA	5.47%	x		x
supernova	0.50%	x		
Unicycler	0.46%	x	x	x
Flye	0.26%		x	
abyss	0.17%	x		x
mccortex	0.06%	x		
velvet	0.06%	x		
SOAPdenovo2	0.01%	Х		

From assembled genome to annotated genome

