
Practical Linux examples: Exercises 
1. Login (ssh) to the machine that you are assigned for this workshop (assigned machines: 

https://cbsu.tc.cornell.edu/ww/machines.aspx?i=116).  Prepare working directory, and copy 
data files into the working directory. (Replace “XXXXX” in the commands with your BioHPC User 
ID ) 

 

2. You are given a gzipped gff3 file. Inspect the content in the file. 
  
 
 

• Inspect the first and last 100 lines of the file, using "head" and "tail" functions to retrieve 
first and last lines of the file; 

• Retrieve line number 1001 to 2000 from the file and write these lines into a new file " 
mynew.gtf "; 

• Inspect the columns 2,3,4,5 and 8 of lines 3901 to 4000, using "cut" function to specify the 
columns. 

• Compare "cut" with "less -S" function. If you use "less" function, remember to exit "less" by 
pressing "q".  

 

 
3. Count the number of genes listed in the file.  

 

 

• Count the total number of lines in the file using "wc -l" function; 
• Count the number of genes list in the file. First, you need to use "awk" to retrieve lines with 

the 3rd column value equals "gene", then count these lines with "wc -l"; 

mkdir /workdir/XXXXX 

cd /workdir/XXXXX 

cp /shared_data/Linux_workshop2/* ./ 

gunzip -c human.gff3.gz | head -n 100 

gunzip -c human.gff3.gz | tail -n 100 

gunzip -c human.gff3.gz| head -n 2000 | tail -n 1000 > mynew.gtf 

gunzip -c human.gff3.gz| head -n 4000 | tail -n 100 | cut -f 2-5,8 

gunzip -c human.gff3.gz| head -n 4000 | tail -n 100 | less -S 

Linux functions: gunzip -c, head, tail, cut, less 

Linux functions: awk, uniq 

https://cbsu.tc.cornell.edu/ww/machines.aspx?i=116


• Count the number for each of the feature categories (genes, exons, rRNA, miRNA, et al.) 
listed in this GFF3 file. The 3rd column in GFF3 file defines feature categories. First your "cut" 
out the 3rd column of the file, then use "sort | uniq -c" to count the occurrences of each of 
the categories.   Note:  "uniq" requires sorted input stream. Always run "sort" before "uniq -
c",  

 

 

 

 

 

4. Convert the GFF3 file to BED file, using only the lines with the third column equals to "gene".  
Then add "chr" to the chromosome name, so that chromosome 1 would be "chr1" instead of 
"1". 

 

 

• The BED file requires a minimum of 3 columns (chromosome, start position and end 
position). It is important to note that start and end positions in BED and GFF3 are defined 
differently. In GFF3 file, the start and end positions are both 1-based (the first nucleotide of 
a sequence is at position 1). In BED file, the start position is 0-based (the first nucleotide of a 
sequence is at position 0), and the end position is 1-based. When converting GFF3 to BED, 
you need to subtract 1 from the start position. In the follow command, the "\" characters 
are used to split a long command into multiple lines.  The expression "BEGIN {OFS = "\t"};'" 
is to specify that the output stream uses tab as delimiters. 

• The "sed" function is probably the fastest way to modify text in a large file and in a stream. 
In this command, the output from awk is piped into "sed", and "sed" would add "chr" to the 
chromosome name. The "^" character in "sed" is to specify making changes at the beginning 
of each line.  

 

 

 
5. Get the size distribution of genes. 

 

gunzip -c human.gff3.gz | wc -l  

gunzip -c human.gff3.gz | awk '{if ($3=="gene") print}' |wc -l 

gunzip -c human.gff3.gz | cut -f 3 | sort | uniq -c 

 

Linux functions: awk, sort, uniq 

Linux functions: awk, sed 

#The following three lines are in one single command 

gunzip -c human.gff3.gz | \ 

awk 'BEGIN {OFS = "\t"};{if ($3=="gene") print  $1,$4-1,$5}' | \ 

sed "s/^/chr/"> mygenes.bed  

 



 

• Calculate the size for each of the genes. The size of genes are calculated by subtracting 
"gene start position" (column4) from "gene end position" (column 5), and adding 1 because 
GFF3 file use 1-based coordinate system for both start and end positions. (If a BED file is 
used to calculate the gene size, you do not need to add 1 because the start position is 0-
based in the BED file). 

• To get the size distribution, you need to add two things to the previous command: 1) Use 
the int(($5-$4+1)/1000) expression to convert the sequence size unit from "base-pair" to 
"kilo-base-pair" and convert the number into an integer; 2) The " LC_ALL=C sort -n | uniq -c" 
combination is used to get the histogram.  Note the three new things are added for the 
"sort" function: "LC_ALL=C" is to forces "sort" to use the base language of ASCII to interpret 
characters. The BioHPC default local is C, you can skip this parameter. But for some servers, 
it is important to add this to make sure that "sort" behaves properly; "-n" is to tell "sort" to do 
numerical sorting; “-S 2G” is to set the buffer size to 2 gb, this would speed up the sorting if 
you have a large file to sort.   As the output from this command is very long, you can write the 
output to a file "gene_dist.txt". 

 

 

 

 

 

 

 

6. Count the number of genes and pseudogenes in sliding windows across the whole chromosome. 

 

 

• BED, GFF3/GTF, SAM/BAM and VCF files are all tab delimited text files used for describing 
features of chromosomal intervals. Software like BEDTools, BEDOPS, VCFTools, SAMtools, 
BAMtools, et al. are often used in combination with basic Linux functions to process these 
files. In this exercise, you will use BEDTools, a very efficient tool for analyzing chromosomal 
interval files, e.g. within each intervals of file A, count the occurrences of features in file B.  

• For this exercise, you will first generate a text file with sliding windows across the 
chromosome. The input file for the "makewindows" function is a text file with the length of 
each chromosomes (hg19.txt). The "-w" and "-s" options specify the window and step size 
for the sliding windows. In this example, the sliding window size is 1 mb.  

• In the next two steps, you will count the number of genes and pseudo-genes in each sliding 
window.  To do this, you can use "awk" to select lines with "gene" or "pseudogene" in 
column 3, use "bedtools coverage" to count the number of genes in each sliding window. 

gunzip -c human.gff3.gz | awk '{if ($3=="gene") print $5-$4+1}' 

#The following three lines are in one single command 

gunzip -c human.gff3.gz | \ 

awk '{if ($3=="gene") print int(($5-$4+1)/1000)'} | \ 

LC_ALL=C sort -S 2G -n | uniq -c > gene_dist.txt 

 

Linux functions: paste;   BEDTools: makewindows, coverage 



The sorting step after "bedtools coverage" is necessary because bedtools tend to output un-
sorted results. In this case, you sort the file by two columns: column 1(chromosome name) 
and column 2(position). Note that you need to use "version" style sorting for column 1 (-
1,1V) and numerical sorting for column 2 (-k2,2n). As chromosome names are like version 
number strings, e.g. chr1, chr2, …, chr10. With "V" sorting, the "chr1" will be placed before 
"chr10", with general text sorting, the "chr1" will be placed after "chr10. The two numbers 
in "-k1,1V" indicate start and end columns for sorting.  

• The "paste" function was used to concatenate the columns, followed by "cut" to output 
selected columns. Note: we use "paste" here because we know that the two files have same 
number of corresponding rows. If not sure,  you need to use "join" function. 

 

 

 

 

 
7. In this exercise, you will use fastx command FASTQ file to trim sequencing adapters, then get 

size distribution of the trimmed sequencing reads.  

bedtools makewindows -g hg19.txt -w 1000000 -s 1000000  >  win1mb.bed 

 

gunzip -c human.gff3.gz | \ 

awk 'BEGIN {OFS = "\t"}; {if ($3=="gene") print $1,$4-1,$5}' | \ 

bedtools coverage -a win1mb.bed -b stdin -counts | \ 

LC_ALL=C sort -k1,1V -k2,2n  > gene.cover.bed 

 

gunzip -c human.gff3.gz | \ 

awk 'BEGIN {OFS = "\t"}; \ 

{if (($3=="processed_pseudogene") || ($3=="pseudogene")) print $1,$4-1,$5}' | \ 

bedtools coverage -a win1mb.bed -b stdin -counts  | \ 

LC_ALL=C sort -k1,1V -k2,2n > pseudogene.cover.bed 

 

paste gene.cover.bed pseudogene.cover.bed | \ 

cut -f 1,2,3,4,8 > genecounts.txt 



 

 

• First you will estimate the percentage of sequencing reads that contain the adapter 
sequence " AGATCGGAAGAGC". As the file could be very big, you could estimate the 
percentage based on the first 10,000 sequencing reads.  (Note: sometimes the first 10,000 
reads could be all low quality reads, then this estimation would not be accurate. You might 
want to try a few blocks of reads at different places of the file by using "head -n xxxxx | tail -
n xxxxx".)   The "grep" function in this command is used to select lines that contain a specific 
string, followed by "wc -l" function that count the number of such lines. By doing this, you 
will find ~48% of the reads in this file contains the adapter sequence. 

• Now, you will remove the adapter sequences. For this, you will use a specialized tool 
fastx_clipper which allows mismatches, and write the output into a new fastq file 
"clean.fastq". You can pipe the "gunzip -c" output directory into input stream of 
fastx_clipper. 

• Now, you will get the read length distribution. In the fastq file, each sequence record has 4 
lines and the second line of the record is the actual DNA sequence. The "awk" function has a 
variable "NR" that records the line number for each row.  The expression (NR%4) gives you 
the remainder of NR divided by 4.  The statement "if (NR%4 == 2) print length($0)" means 
"print the size of the second line in every 4-line sequence record". The output of awk 
can then be piped into "LC_ALL=C sort -n | uniq -c" to get the read size distribution. 

 

 

8. Running multiple independent tasks in parallel on a multi-CPU machine 

As a simple example of multiple independent task problem, we will consider compressing several (here: 
5) large files, reads_1.fastq, reads_2.fastq, …, reads_5.fastq using gzip compression 
tool. The compression should be run in parallel using several (e.g., 3) CPU cores. 

Instructions: 

Your scratch directory /workdir/XXXXX should already contain the five *.fastq files mentioned 
above - verify this using the ls command.  

Linux functions: grep, wc -l, awk;   FASTX:  

gunzip -c SRR836349.fastq.gz |head -n 40000 | grep AGATCGGAAGAGC | wc -l 

 

gunzip -c SRR836349.fastq.gz | fastx_clipper -a AGATCGGAAGAGC -Q33 > clean.fastq 

 

awk '{if (NR%4 == 2) print length($0)}' clean.fastq | LC_ALL=C sort -n | uniq -c 



Create a text file, called my_tasks, containing the list of tasks to be executed, i.e., the five gzip 
commands, one in each line. The file should look like this: 

gzip reads_1.fastq 
gzip reads_2.fastq 
gzip reads_3.fastq 
gzip reads_4.fastq 
gzip reads_5.fastq 

 

There are many different ways to create this text file. Here is one way:  

 

 

• ls -1:  “1” in this command is the number “one” . It would list all files matching “reads*fastq”. 
The “-1” parameter is to specify that the output is one file name per line; 

• sed "s/^/gzip /" : Replace the starting position of each line with “gzip “ 

Here is another way: 

 

 

 

 

• ls -1 reads*fastq > t1: Create a text file with all file names; 
• yes "gzip" |head -n 5 > t2 : Create a text file with 5 lines of “gzip” 
• paste -d " " t1 t2: Join t1 and t2 files horizontally, with space 

character as delimiter.    

 

After creating the my_tasks file, verify that it makes sense by looking at a few first lines, e.g., 

head -2 my_tasks 

Now that the task file my_tasks is created, it is time to run these tasks in parallel! To try this, run the 
following command: 

perl_fork_univ.pl my_tasks 3 >& my_tasks.log & 

Immediately after submitting the above command (thanks to the & at the end it will run in the 
background and free the terminal for further action), run ls -alrt a few times and verify that the 
compressed files reads_1.fastq.gz, ..., reads_5.fastq.gz are being created and are growing 
in size. First, you should see three such files, then the remaining two. While the operation is running, the 
original (uncompressed) versions of the files will co-exist with the partial compressed ones. Once the 
compression of a file is completed, its original version is deleted. 

ls -1 reads*fastq | sed "s/^/gzip /" > my_tasks 

 

ls -1 reads*fastq > t1 

yes "gzip" |head -n 5 > t2 

paste -d " " t1 t2 > my_tasks 



Run the command top -u yourID - you should see your three gzip processes on top of the list, 
consuming sizeable fraction of CPU time (to exit top - press q). 

So, what is happening here?  The script perl_fork_univ.pl (located 
in/programs/bin/perlscripts) reads the list of tasks my_tasks and launches the first three 
simultaneously, on separate CPU cores. Once any of these initial three tasks completes freeing up its 
CPU core, the next task is launched in its place (with two others still running). The process continues 
until all tasks are finished, while the number of CPU cores being utilized never exceeds 3. This way, the 
load is balanced between the three CPU cores. A report from the run is saved in the log file 
my_tasks.log. It contains some useful timing information you may want to analyze. 

 

A few remarks: 

The script perl_fork_univ.pl is a simple way to parallelize any number of independent tasks on a 
multi-core machine. Just construct the task list file and run it through the script. The tasks do not need 
to be similar (as it is the case in our simple example), however, they need to be independent from one 
another. 

How many CPU cores to use (here: 3)? It depends on many factors, such as: 

• total number of CPU cores on a machine: launching more tasks than available CPUs cores is 
counter-productive 

• memory taken by each task: combined memory required by all tasks running simultaneously 
should not exceed about 90% of total memory available on a machine; memory taken by each 
of your running processes can be monitored with top 

• disk I/O bandwidth: if all simultaneously running tasks read and write a lot to the same disk, 
they will compete for disk bandwidth, so running too many of them may slow things down 
instead of speeding them up (this is, actually, the case in our example, since gzip-ing is a disk-
intensive operation). 

• other jobs running on a machine: if present, they also take CPU cores and memory! Example: 
during this exercise, there are about 7 other people working on your machine, each trying to 
run on 3 CPUs! 

Typically, determining the right number of CPUs to run on requires some experimentation. 

 

 


