
Practical Linux examples: Exercises
1. Login (ssh) to the machine that you are assigned for this workshop (assigned machines:

https://cbsu.tc.cornell.edu/ww/machines.aspx?i=116). Prepare working directory, and copy
data files into the working directory. (Replace “XXXXX” in the commands with your BioHPC User
ID)

2. You are given a gzipped gff3 file. Inspect the content in the file.

• Inspect the first and last 100 lines of the file, using "head" and "tail" functions to retrieve
first and last lines of the file;

• Retrieve line number 1001 to 2000 from the file and write these lines into a new file "
mynew.gtf ";

• Inspect the columns 2,3,4,5 and 8 of lines 3901 to 4000, using "cut" function to specify the
columns.

• Compare "cut" with "less -S" function. If you use "less" function, remember to exit "less" by
pressing "q".

3. Count the number of genes listed in the file.

• Count the total number of lines in the file using "wc -l" function;
• Count the number of genes list in the file. First, you need to use "awk" to retrieve lines with

the 3rd column value equals "gene", then count these lines with "wc -l";

mkdir /workdir/XXXXX

cd /workdir/XXXXX

cp /shared_data/Linux_workshop2/* ./

gunzip -c human.gff3.gz | head -n 100

gunzip -c human.gff3.gz | tail -n 100

gunzip -c human.gff3.gz| head -n 2000 | tail -n 1000 > mynew.gtf

gunzip -c human.gff3.gz| head -n 4000 | tail -n 100 | cut -f 2-5,8

gunzip -c human.gff3.gz| head -n 4000 | tail -n 100 | less -S

Linux functions: gunzip -c, head, tail, cut, less

Linux functions: awk, uniq

https://cbsu.tc.cornell.edu/ww/machines.aspx?i=116

• Count the number for each of the feature categories (genes, exons, rRNA, miRNA, et al.)
listed in this GFF3 file. The 3rd column in GFF3 file defines feature categories. First your "cut"
out the 3rd column of the file, then use "sort | uniq -c" to count the occurrences of each of
the categories. Note: "uniq" requires sorted input stream. Always run "sort" before "uniq -
c",

4. Convert the GFF3 file to BED file, using only the lines with the third column equals to "gene".
Then add "chr" to the chromosome name, so that chromosome 1 would be "chr1" instead of
"1".

• The BED file requires a minimum of 3 columns (chromosome, start position and end
position). It is important to note that start and end positions in BED and GFF3 are defined
differently. In GFF3 file, the start and end positions are both 1-based (the first nucleotide of
a sequence is at position 1). In BED file, the start position is 0-based (the first nucleotide of a
sequence is at position 0), and the end position is 1-based. When converting GFF3 to BED,
you need to subtract 1 from the start position. In the follow command, the "\" characters
are used to split a long command into multiple lines. The expression "BEGIN {OFS = "\t"};'"
is to specify that the output stream uses tab as delimiters.

• The "sed" function is probably the fastest way to modify text in a large file and in a stream.
In this command, the output from awk is piped into "sed", and "sed" would add "chr" to the
chromosome name. The "^" character in "sed" is to specify making changes at the beginning
of each line.

5. Get the size distribution of genes.

gunzip -c human.gff3.gz | wc -l

gunzip -c human.gff3.gz | awk '{if ($3=="gene") print}' |wc -l

gunzip -c human.gff3.gz | cut -f 3 | sort | uniq -c

Linux functions: awk, sort, uniq

Linux functions: awk, sed

#The following three lines are in one single command

gunzip -c human.gff3.gz | \

awk 'BEGIN {OFS = "\t"};{if ($3=="gene") print $1,$4-1,$5}' | \

sed "s/^/chr/"> mygenes.bed

• Calculate the size for each of the genes. The size of genes are calculated by subtracting
"gene start position" (column4) from "gene end position" (column 5), and adding 1 because
GFF3 file use 1-based coordinate system for both start and end positions. (If a BED file is
used to calculate the gene size, you do not need to add 1 because the start position is 0-
based in the BED file).

• To get the size distribution, you need to add two things to the previous command: 1) Use
the int(($5-$4+1)/1000) expression to convert the sequence size unit from "base-pair" to
"kilo-base-pair" and convert the number into an integer; 2) The " LC_ALL=C sort -n | uniq -c"
combination is used to get the histogram. Note the three new things are added for the
"sort" function: "LC_ALL=C" is to forces "sort" to use the base language of ASCII to interpret
characters. The BioHPC default local is C, you can skip this parameter. But for some servers,
it is important to add this to make sure that "sort" behaves properly; "-n" is to tell "sort" to do
numerical sorting; “-S 2G” is to set the buffer size to 2 gb, this would speed up the sorting if
you have a large file to sort. As the output from this command is very long, you can write the
output to a file "gene_dist.txt".

6. Count the number of genes and pseudogenes in sliding windows across the whole chromosome.

• BED, GFF3/GTF, SAM/BAM and VCF files are all tab delimited text files used for describing
features of chromosomal intervals. Software like BEDTools, BEDOPS, VCFTools, SAMtools,
BAMtools, et al. are often used in combination with basic Linux functions to process these
files. In this exercise, you will use BEDTools, a very efficient tool for analyzing chromosomal
interval files, e.g. within each intervals of file A, count the occurrences of features in file B.

• For this exercise, you will first generate a text file with sliding windows across the
chromosome. The input file for the "makewindows" function is a text file with the length of
each chromosomes (hg19.txt). The "-w" and "-s" options specify the window and step size
for the sliding windows. In this example, the sliding window size is 1 mb.

• In the next two steps, you will count the number of genes and pseudo-genes in each sliding
window. To do this, you can use "awk" to select lines with "gene" or "pseudogene" in
column 3, use "bedtools coverage" to count the number of genes in each sliding window.

gunzip -c human.gff3.gz | awk '{if ($3=="gene") print $5-$4+1}'

#The following three lines are in one single command

gunzip -c human.gff3.gz | \

awk '{if ($3=="gene") print int(($5-$4+1)/1000)'} | \

LC_ALL=C sort -S 2G -n | uniq -c > gene_dist.txt

Linux functions: paste; BEDTools: makewindows, coverage

The sorting step after "bedtools coverage" is necessary because bedtools tend to output un-
sorted results. In this case, you sort the file by two columns: column 1(chromosome name)
and column 2(position). Note that you need to use "version" style sorting for column 1 (-
1,1V) and numerical sorting for column 2 (-k2,2n). As chromosome names are like version
number strings, e.g. chr1, chr2, …, chr10. With "V" sorting, the "chr1" will be placed before
"chr10", with general text sorting, the "chr1" will be placed after "chr10. The two numbers
in "-k1,1V" indicate start and end columns for sorting.

• The "paste" function was used to concatenate the columns, followed by "cut" to output
selected columns. Note: we use "paste" here because we know that the two files have same
number of corresponding rows. If not sure, you need to use "join" function.

7. In this exercise, you will use fastx command FASTQ file to trim sequencing adapters, then get

size distribution of the trimmed sequencing reads.

bedtools makewindows -g hg19.txt -w 1000000 -s 1000000 > win1mb.bed

gunzip -c human.gff3.gz | \

awk 'BEGIN {OFS = "\t"}; {if ($3=="gene") print $1,$4-1,$5}' | \

bedtools coverage -a win1mb.bed -b stdin -counts | \

LC_ALL=C sort -k1,1V -k2,2n > gene.cover.bed

gunzip -c human.gff3.gz | \

awk 'BEGIN {OFS = "\t"}; \

{if (($3=="processed_pseudogene") || ($3=="pseudogene")) print $1,$4-1,$5}' | \

bedtools coverage -a win1mb.bed -b stdin -counts | \

LC_ALL=C sort -k1,1V -k2,2n > pseudogene.cover.bed

paste gene.cover.bed pseudogene.cover.bed | \

cut -f 1,2,3,4,8 > genecounts.txt

• First you will estimate the percentage of sequencing reads that contain the adapter
sequence " AGATCGGAAGAGC". As the file could be very big, you could estimate the
percentage based on the first 10,000 sequencing reads. (Note: sometimes the first 10,000
reads could be all low quality reads, then this estimation would not be accurate. You might
want to try a few blocks of reads at different places of the file by using "head -n xxxxx | tail -
n xxxxx".) The "grep" function in this command is used to select lines that contain a specific
string, followed by "wc -l" function that count the number of such lines. By doing this, you
will find ~48% of the reads in this file contains the adapter sequence.

• Now, you will remove the adapter sequences. For this, you will use a specialized tool
fastx_clipper which allows mismatches, and write the output into a new fastq file
"clean.fastq". You can pipe the "gunzip -c" output directory into input stream of
fastx_clipper.

• Now, you will get the read length distribution. In the fastq file, each sequence record has 4
lines and the second line of the record is the actual DNA sequence. The "awk" function has a
variable "NR" that records the line number for each row. The expression (NR%4) gives you
the remainder of NR divided by 4. The statement "if (NR%4 == 2) print length($0)" means
"print the size of the second line in every 4-line sequence record". The output of awk
can then be piped into "LC_ALL=C sort -n | uniq -c" to get the read size distribution.

8. Running multiple independent tasks in parallel on a multi-CPU machine

As a simple example of multiple independent task problem, we will consider compressing several (here:
5) large files, reads_1.fastq, reads_2.fastq, …, reads_5.fastq using gzip compression
tool. The compression should be run in parallel using several (e.g., 3) CPU cores.

Instructions:

Your scratch directory /workdir/XXXXX should already contain the five *.fastq files mentioned
above - verify this using the ls command.

Linux functions: grep, wc -l, awk; FASTX:

gunzip -c SRR836349.fastq.gz |head -n 40000 | grep AGATCGGAAGAGC | wc -l

gunzip -c SRR836349.fastq.gz | fastx_clipper -a AGATCGGAAGAGC -Q33 > clean.fastq

awk '{if (NR%4 == 2) print length($0)}' clean.fastq | LC_ALL=C sort -n | uniq -c

Create a text file, called my_tasks, containing the list of tasks to be executed, i.e., the five gzip
commands, one in each line. The file should look like this:

gzip reads_1.fastq
gzip reads_2.fastq
gzip reads_3.fastq
gzip reads_4.fastq
gzip reads_5.fastq

There are many different ways to create this text file. Here is one way:

• ls -1: “1” in this command is the number “one” . It would list all files matching “reads*fastq”.
The “-1” parameter is to specify that the output is one file name per line;

• sed "s/^/gzip /" : Replace the starting position of each line with “gzip “

Here is another way:

• ls -1 reads*fastq > t1: Create a text file with all file names;
• yes "gzip" |head -n 5 > t2 : Create a text file with 5 lines of “gzip”
• paste -d " " t1 t2: Join t1 and t2 files horizontally, with space

character as delimiter.

After creating the my_tasks file, verify that it makes sense by looking at a few first lines, e.g.,

head -2 my_tasks

Now that the task file my_tasks is created, it is time to run these tasks in parallel! To try this, run the
following command:

perl_fork_univ.pl my_tasks 3 >& my_tasks.log &

Immediately after submitting the above command (thanks to the & at the end it will run in the
background and free the terminal for further action), run ls -alrt a few times and verify that the
compressed files reads_1.fastq.gz, ..., reads_5.fastq.gz are being created and are growing
in size. First, you should see three such files, then the remaining two. While the operation is running, the
original (uncompressed) versions of the files will co-exist with the partial compressed ones. Once the
compression of a file is completed, its original version is deleted.

ls -1 reads*fastq | sed "s/^/gzip /" > my_tasks

ls -1 reads*fastq > t1

yes "gzip" |head -n 5 > t2

paste -d " " t1 t2 > my_tasks

Run the command top -u yourID - you should see your three gzip processes on top of the list,
consuming sizeable fraction of CPU time (to exit top - press q).

So, what is happening here? The script perl_fork_univ.pl (located
in/programs/bin/perlscripts) reads the list of tasks my_tasks and launches the first three
simultaneously, on separate CPU cores. Once any of these initial three tasks completes freeing up its
CPU core, the next task is launched in its place (with two others still running). The process continues
until all tasks are finished, while the number of CPU cores being utilized never exceeds 3. This way, the
load is balanced between the three CPU cores. A report from the run is saved in the log file
my_tasks.log. It contains some useful timing information you may want to analyze.

A few remarks:

The script perl_fork_univ.pl is a simple way to parallelize any number of independent tasks on a
multi-core machine. Just construct the task list file and run it through the script. The tasks do not need
to be similar (as it is the case in our simple example), however, they need to be independent from one
another.

How many CPU cores to use (here: 3)? It depends on many factors, such as:

• total number of CPU cores on a machine: launching more tasks than available CPUs cores is
counter-productive

• memory taken by each task: combined memory required by all tasks running simultaneously
should not exceed about 90% of total memory available on a machine; memory taken by each
of your running processes can be monitored with top

• disk I/O bandwidth: if all simultaneously running tasks read and write a lot to the same disk,
they will compete for disk bandwidth, so running too many of them may slow things down
instead of speeding them up (this is, actually, the case in our example, since gzip-ing is a disk-
intensive operation).

• other jobs running on a machine: if present, they also take CPU cores and memory! Example:
during this exercise, there are about 7 other people working on your machine, each trying to
run on 3 CPUs!

Typically, determining the right number of CPUs to run on requires some experimentation.

