
Python – Exercises

Part 1. Python shell and Python script

1.1 Python shell vs Bash shell

A "shell" is a program that takes commands from the keyboard and gives them to the operating
system to perform. Bash is the default "shell" in most Linux systems.

1.2. Check versions of Python and Python packages in either bash shell or Python shell

Python shell can be a powerful tool for debugging Python environment errors.

1.3 Working with Python script.

In the Linux workshop, you learned how to write a shell script ("Bash"). Just like a (Bash) shell
script, which is a file of a set of "Bash" commands, a "Python" script is a file with a set of "Python"
commands.

#In a Bash shell, you can run bash command like "ls"

ls -al

#Switch from Bash to Python shell

python

#Run python commands

import os

os.listdir()

#Exit Python shell and back to Bash

quit()

#In a Bash shell, check versions for Python and Python package Numpy

python -V

pip show numpy

#Switch from Bash to Python shell

python

#In Python shell, check versions for Python and Python package Numpy

import sys

print(sys.version)

import numpy

print(numpy.__version__)

print(numpy.__file__)

#exit python shell

quit()

In this exercise, you will create a python script file named "myscript.py" with the following lines.
You can use any text editor to create this file, for example, vi, nano, Notepad++ on Windows,
BBEdit on Mac, et al.

If you have problem to use any of the Text editors, you can simply copy a pre-made script file to
your current directory:

Run the script

The Linux shell command "ls -l" tells you whether a script file is readable or executable. If a script
file is readable, you can run the script with the command "python myscript.py". In this case, the
Python interpreter is the executable which read the content of the script file. However, if a script
is executable and the file starts with a shebang line, you can run the script with the command
"./myscript.py". The "./" part is needed here, because it specifies the path of the script file. You
can skip "./" if you include the current directory in the Linux $PATH variable.

#!/usr/bin/python3

import numpy

print("Hellow World")

print(numpy.__version__)

print(numpy.__file__)

cp /shared_data/qisun/myscript.py ./

#If you run script this way, you would get an error message "Permission denied".

Try it.

./myscript.py

#However, the following command would work. Why? The answer is in the text right

after this block of code.

python ./myscript.py

#Change the file to an executable file. Do you see the difference before and

after you run "chmod a+x"?

ls -l myscript.py

chmod a+x myscript.py

ls -l myscript.py

#now try again

./myscript.py

#Can I run the script without the "./" part? Try it.

myscript.py

#if you include the current directory in the $PATH variable, now you can

export PATH=./:$PATH

myscript.py

Part 2. Install Python software with PIP

2.1 Check the version of python and pip

On BioHPC computers, the "python" command points to "python3.6.7", with "pip" command
linked to this default python. The "python2" command points to "python2.7.15", with "pip2"
command linked to python2.

Before you install any python modules, it is always a good idea to ask these three questions.

1. Which copy of Python installation will you be running?
2. What is the version of the Python?
3. Whether the pip command you are running is associated with the Python you will be

running?

Use the following commands to address these questions:

2.2 Switching default python using "module" command.

To execute python 3.6, you can use the alias "python" as the command or full path command
"/usr/bin/python3.6". Linux "module" function provides an easy way to switch default "python".

2.3 Install and use python module python-dummy
Install a dummy package called "python-dummy" in the directory ~/.local/

Check the directory ~/.local/ to find the newly installed package, you should see the installation
directory "python_dummy-0.1.0.dist-info" and a file "dummy.py"

which python

ls -l /usr/local/bin/python

python -V ##use capital V

which pip

head -n1 /usr/local/bin/pip # the "head -n1" command prints the first line of

a text file

list the available modules

module avail

switch default python/pip to version 3.9.6

module load python/3.9.6

which python

which pip

switch back to default python

module unload python/3.9.6

which python

which pip

pip install python-dummy --user

2.4 Check the "pip-install-test" file in Python shell.

After you are done, press “Ctrl-d” or type "quit()" to exit python shell.

• Make sure that you type double-underline for the part "__file__" .

Part 3. Install PYTHON software with Conda

3.1 If you do not already have Miniconda3 in your home directory, install it now. If you are not
sure, run the command "ls -l $HOME". If you do not see a directory called "miniconda3", you need
to install it.

The “chmod u+x” command makes the file executable.

During the installation, you will be asked for multiple questions:

1) “Please, press ENTER to continue”: press “ENTER” key;

2) “More”: keep pressing “SPACE” key until you reach next question;

3) “Do you accept the license terms?”: enter “yes”

4) “Miniconda3 will now be installed into this location … ”: press “ENTER” key and accept the
default “/home/xxxxx/miniconda3”.

5) “Do you wish the installer to initialize Miniconda3” : Press ENTER to accept the
default “no”;

3.2 Install/run pysam in Conda base. In this exercise.

cd /home/qisun/.local/lib/python3.6/site-packages/

ls -lrt

python

import dummy

dummy.__file__

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh

chmod u+x Miniconda3-latest-Linux-x86_64.sh

./Miniconda3-latest-Linux-x86_64.sh

3.3 Install/run pysam in a Conda environment

Create a virtual environment and give it a name “pysam”, install pysam the virtual environment.
This time, you will use "mamba", an alternative Conda package manager.

The command “conda create -n pysam” would create an environment called “pysam” (you
can use any names), and install the pysam package into it.
This environment is independent from python base, you can have different versions of
python, and different versions of dependencies (e.g. numpy) within the environment

Start the pysam environment, and run python

Run "conda activate pysam" if you are already in Conda "base". Otherwise you can use a single
command "source $HOME/miniconda3/bin/activate pysam" to get into the environment directly.

3.4 Create a conda environment with a different version of Python
Sometimes, you need to run an old script that requires python 2.7. You can create a conda
environment with python =2.7

Note in the first command there is no package name. This step would create an empty python2.7
environment, within which you can use pip to install other python modules.

source $HOME/miniconda3/bin/activate

which python

python -V

conda install -c bioconda pysam

conda install -y pip

which pip

head -n1 ~/miniconda3/bin/pip

conda install mamba

mamba create -c bioconda -n pysam pysam

conda activate pysam

which python

python -V

which pip

mamba create -n myNewPipeline python=2.7

mamba activate myNewPipeline

which python

which pip

python -V

When you run "conda" or "mamba" to install packages, you will be prompted to inspect the
versions to be installed, and answer "y" to continue. If you wish to skip this step, use the "-y"
option: "conda install -y".

3.5 Exit conda

You might need to run this command twice to exit Conda environment and Conda base.

Part 4. Jupyter Notebook

Pick a number between 8009 and 8039 as the port you will use, for example 8029. Verify whether
this port is taken or not. If you do not see "8019 ... LISTEN" with the following command, that
means the port is available.

Run following command to start Jupyter notebook daemon.

Copy the URL, and open it in a web browser. You can detach the "screen" session by pressing
"ctrl-d".

conda deactivate

netstat -tulpn | grep 8029

screen

export PYTHONPATH=/programs/jupyter3/lib/python3.6/site-

packages:/programs/jupyter3/lib64/python3.6/site-packages

export PATH=/programs/jupyter3/bin:$PATH

jupyter notebook --ip=0.0.0.0 --port=8029 --no-browser

