Statistics of RNA-seq data analysis

Jeff Glaubitz and Qi Sun

November 9, 2020 Bioinformatics Facility Institute of Biotechnology Cornell University

RNA-Seq Statistics:

- Normalization between samples
- Differentially Expressed Genes (DE)

Genes	Control	Treated
Gene A	10	30
Gene B	30	90
Gene C	5	15
Gene D	1	3
Gene N	80	240
	126	378

Genes	Control	Treated
Gene A	10	30
Gene B	30	90
Gene C	5	15
Gene D	1	3
Gene N	80	240
	126	378

MA Plots between samples

Normalization

• With the assumption that most genes are expressed equally, the log ratio should mostly be close to 0

Simple normalization

CPM (Count Per Million mapped reads)

Normalized by:

- Total number of reads (fragments) aligned to a gene

FPKM (Fragments Per Kilobase Of Exon Per Million Fragments) Normalized by:

- Total fragment count (number of reads or read pairs)
- Gene length (kb)

CPM : Not normalized by gene length. Longer genes tend to have higher CPM values than shorter genes. But that is ok, as in RNA-Seq experiments, we do not compare between genes, only compare the same gene between different samples.

Simple normalization could fail

Genes	Control	Treated
Gene A	10	30
Gene B	30	90
Gene C	5	15
Gene D	1	3
Gene N	1000	240
	1046	378

TMM normalization

(Trimmed mean of M-values)

M = log2(Test/Test_total)-log2(Ref/Ref_total)

A =0.5 *log2(Test/Test_total*Ref/Ref_total)

"Effective library size"

DESeq2 normalization

1. For each gene, calculate geometric mean

$$\left(\prod_{i=1}^n x_i
ight)^{rac{1}{n}} = \sqrt[n]{x_1x_2\cdots x_n}$$

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Geomean
Gene1	34	56	23	12	10	30	23
Gene 2	10	6	7	11	12	8	9
Gene n	65	78	67	34	56	23	50

2. For each gene, calculate ratio to geometric mean

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Gene1	1.5	2.4	1.0	0.5	0.4	1.3
Gene 2	1.1	0.7	0.8	1.3	1.4	0.9
Gene n	1.3	1.6	1.4	0.7	1.1	0.5

3. Take median of these ratios as sample normalization factor ("size factor")

1.3 1.6 1 0.7 1.1 0.9

Biological vs. technical replicates

Scenario	Replicate Type
Split tissue sample evenly into 2 RNA preps	Technical
Split RNA sample into two library preps	Technical
Split library across two sequencing flow cells	Technical
RNA prep from different leaves on same plant	Technical/Biological
Different clones of the same genotype in same treatment condition	Biological
Different genotypes in same treatment condition	Biological

Differentially expressed genes

If we could do 100 biological replicates:

Distribution of Expression Level of A Gene

Control samples

Treated samples

The reality is, often we can only afford 3 or so replicates:

Distribution of Expression Level of A Gene

Control samples

Treated samples

How many biological replicates?

- 3 replicates are the *bare minimum* for publication
- Schurch *et al.* (2016) recommend at least 6 replicates for adequate statistical power to detect DE
- Depends on biology and study objectives
- Trade off with sequencing depth
- Some replicates might have to be removed from the analysis because poor quality (outliers)

Too few DE genes

Differentially Expressed Genes

Expression level of gene 1

Control:		Treated:	
Replic 1	24	Replic 1	23
Replic 2	25	Replic 2	26
Replic 3	27	Replic 3	<u>102</u>

Is this a DE gene?

You might get different answers depending of which software you run.

Available RNA-seq analysis packages for DE

TABLE 2. A summary of the recommendations of this paper

				Tool (# ge	recommend ood replicat condition) ⁶	led for: es per d
	Agreement with other tools ^a	WT vs. WT $\ensuremath{FPR^{b}}$	Fold-change threshold (T) ^c	≤3	<u>≤</u> 12	>12
DESeq	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
DESeq2	Consistent	Pass	0 0.5 2.0	Yes	- Yes Yes	Yes Yes Yes
EBSeq	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
edgeR (exact)	Consistent	Pass	0 0.5 2.0	Yes	- Yes Yes	Yes Yes Yes
Limma	Consistent	Pass	0 0.5 2.0	- - Yes	- Yes Yes	Yes Yes Yes
cuffdiff	Consistent	Fail				
BaySeq	Inconsistent	Pass				
edgeR (GLM)	Inconsistent	Pass				
DEGSeq	Inconsistent	Fail				
NOISeq	Inconsistent	Fail				
PoissonSeq	Inconsistent	Fail				
SAMSeq	Inconsistent	Fail				

From: Schurch *et al.* 2016. *RNA* 22:839-851

Why DESeq2?

- 1. Top method recommended by Schurch *et al.* (2016), along with *EdgeR*
- 2. Cutting-edge tool widely used and accepted: 20,556 citations (Google Scholar on Nov 8, 2020)
- 3. Documentation (and papers) very thorough and well-written <u>www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html</u>
- 4. The first author (Mike Love) provides amazing support! Most questions that you Google (e.g., <u>support.bioconductor.org</u>) are clearly and definitively answered by the author himself.
- 5. R functions in *DESeq2* package are intuitive to R users (and modifiable). Defining the experimental design is easy and intuitive, even for complex, multifactor designs:

```
design= ~ batch + weight + genotype + treatment + genotype:treatment
```

Hypothesis tests require accurate statistical model

Negative binomial (variance >= mean)

Negative binomial best fit for RNA-Seq data

Mean gene expression level (log10 scale)

DESeq2 fits an negative binomial GLM

Type of analyses

DESeq2: Design specifications

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ treatment)

dds <- **DESeqDataSetFromMatrix**(countData = cts, colData = coldata, design= ~ batch + treatment)

Model genotype by treatment interaction: dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ batch + genotype + treatment + genotype:treatment)

Likelihood ratio test for genotype by treatment interaction: ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment)</pre>

resLRT <- results(ddsLRT)</pre>

DESeq2 fits an negative binomial GLM

DESeq2: One factor design

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ Genotype)</pre>

<u>coldata:</u>

	(Intercept)	Genotypewt
wt1	1	1
wt2	1	1
wt3	1	1
mu1	1	0
mu2	1	0
mu3	1	0

Design Matrix:

Sample	Genotype
wt1	wt
wt2	wt
wt3	wt
mu1	mu
mu2	mu
mu3	mu

DESeq2: Two factor design

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ type + condition)</pre>

<u>coldata:</u>	

file	condition	type
treated1fb	treated	single-read
treated2fb	treated	paired-end
treated3fb	treated	paired-end
untreated1fb	untreated	single-read
untreated2fb	untreated	single-read
untreated3fb	untreated	paired-end
untreated4fb	untreated	paired-end

	(Intercept)	typesingle_read	conditiontreated
1)	1	1	1
2)	1	0	1
3)	1	0	1
4)	1	1	0
5)	1	1	0
6)	1	0	0
7)	1	0	0

Design Matrix:

DESeq2: Two factor design with interaction

dds <- DESeqDataSetFromMatrix(countData=cts, colData=coldata, design= ~ strain + minute + strain:minute)</pre>

<u>coldata:</u>

	strain	minute
GSM1368273	wt	0
GSM1368274	wt	0
GSM1368275	wt	0
GSM1368285	wt	120
GSM1368286	wt	120
GSM1368287	wt	120
GSM1368291	mut	0
GSM1368292	mut	0
GSM1368293	mut	0
GSM1368303	mut	120
GSM1368304	mut	120
GSM1368305	mut	120

Design Matrix:

	(Intercept)	strainwt	minute120	<pre>strainwt:minute120</pre>
1)	1	1	0	0
2)	1	1	0	0
3)	1	1	0	0
4)	1	1	1	1
5)	1	1	1	1
6)	1	1	1	1
7)	1	0	0	0
8)	1	0	0	0
9)	1	0	0	0
10)	1	0	1	0
11)	1	0	1	0
12)	1	0	1	0

Genotype by Treatment Interaction (3 genotypes)

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ batch + genotype + treatment + genotype:treatment)

ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment)
resLRT <- results(ddsLRT)</pre>

DESeq2: Empirical Bayes shrinkage of dispersion

- Not enough replicates to estimate dispersion for individual genes
- Borrow information from genes of similar expression strength among the replicates
- Genes with very high dispersion left as is (violate model assumptions?)

DESeq2: Empirical Bayes shrinkage of fold change

• LFC estimates for weakly expressed genes very noisy and often overestimated

DESeq2: Empirical Bayes shrinkage of log fold change improves reproducibility

• Large data-set split in half \rightarrow compare log2 fold change estimates for each gene

DESeq2: Statistical test for DE

Test for DE:

- (*shrunkenLFC*) / (*stdErr*) = Wald statistic
- Wald statistic follows std. normal dist.
- *p* value of LFC obtained from standard normal distribution

Automatic Outlier Detection:

- Outlier samples detected using "Cook's distance"
- Few than 7 biological reps: *p* value set to "NA"
- 7 or more biological reps: sample replaced with mean

Multiple Testing:

- *p* values adjusted for multiple testing using Benjamini and Hochberg (1995) procedure
 - Controls false discovery rate (FDR)

False Discovery Rate

Truth Different Same Total Different TP FP R Experiment Same FN TN m - R Total Ρ Ν m

- m: total number of tests (e.g., genes)
- N: number of true null hypotheses
- **P**: number of true alternate hypotheses
- R: number of rejected null hypotheses ("discoveries")
- **TP**: number of true positives ("true discoveries")
- TN: number of true negatives
- FP: number of false positives ("false discoveries") (Type I error)
- FN: number of false negatives (Type II error)
- FDR = "false discoveries" / "discoveries" = FP / (FP + TP)

DESeq2: Automated independent filtering of genes

- DESeq2 automatically omits weakly expressed genes from the multiple testing procedure
 - –Fewer tests increase statistical power \rightarrow more discoveries
- LFC estimates for weakly expressed genes very noisy

-Very little chance that these will detected as DE (*i.e.*, null hypothesis rejected)

• Threshold overall counts (filter statistic) optimized for target FDR (default FDR = 0.1)

Figure 1: The number of rejected tests for FDR less than 0.1 plotted over theta, the quantiles of the filter statistic.

DESeq2 analysis feedback & summary

```
> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing</pre>
```

```
> summary(res)
out of 14177 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 273, 1.9%
LFC < 0 (down) : 327, 2.3%
outliers [1] : 25, 0.18%
low counts [2] : 1650, 12%
(mean count < 4)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

DESeq2: Output of DE analysis

1	gene	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
2	gene27816	416.9148177	-2.511490321	0.428727267	-5.858013979	4.68E-09	5.11E-05
3	gene27620	101.8253191	-2.778767979	0.553389846	-5.021357008	5.13E-07	0.001440413
4	gene31204	365.5088989	-1.143004071	0.227873895	-5.015950038	5.28E-07	0.001440413
5	gene4446	125 745322	-3 205715488	0 637910711	-5 025335725	5.03E-07	0.001440413
6	gene1 Ge	t list of in	teresting g	enes by f	iltering o	n: 20E-06	0.002553055
7	gene1	1				40E-06	0.002553055
8	gene3	L. P _{adj}	(FDR) < 0.0	5, and/or		.77E-06	0.002756968
9	gene8	2. log2	FoldChange < -1 or >1. and/or		23E-06	0.003038386	
10	gene2				_,, .	.89E-06	0.005937898
11	gene2	3. Dase	elviean (opi	lional)		.99E-06	0.007929629
12	gene9777	207.8848249	0.90630494	0.202189437	4.482454445	7.38E-06	0.007929629
13	gene21278	357.2070995	-1.375680007	0.309791352	-4.440666269	8.97E-06	0.008159457
14	gene34591	77.02015308	-2.724251177	0.632181028	-4.309289679	1.64E-05	0.013754978

...bottom of file = genes excluded from multiple testing:

22902 22903 gene116020.1826834341.2864098624.4091144950.2917615010.770468983N/22903 gene116020.1751752751.2864018694.4091145090.2917596870.77047037N/22904 gene303250.1687768371.6069891354.4091145630.3644698070.715507216N/22905 gene352030.1597026731.8469219274.406611070.4191252410.675124605N/22906 gene253710.1532701421.2864118774.4091144950.2917619580.770468634N/22907 gene76780.1413087270.933430574.4079599070.2117602220.832294103N/22908 gene132390.1322212671.4925226532.6864123710.555582110.578496564N/22909 gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910 gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911 gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912 gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22903gene116020.1751752751.2864018694.4091145090.2917596870.77047037N/22904gene303250.1687768371.6069891354.4091145630.3644698070.715507216N/22905gene352030.1597026731.8469219274.406611070.4191252410.675124605N/22906gene253710.1532701421.2864118774.4091144950.2917619580.770468634N/22907gene76780.1413087270.933430574.4079599070.2117602220.832294103N/22908gene132390.1322212671.4925226532.6864123710.555582110.578496564N/22909gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22904gene303250.1687768371.6069891354.4091145630.3644698070.715507216N/22905gene352030.1597026731.8469219274.406611070.4191252410.675124605N/22906gene253710.1532701421.2864118774.4091144950.2917619580.770468634N/22907gene76780.1413087270.933430574.4079599070.2117602220.832294103N/22908gene132390.1322212671.4925226532.6864123710.555582110.578496564N/22909gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22905gene352030.1597026731.8469219274.406611070.4191252410.675124605N/22906gene253710.1532701421.2864118774.4091144950.2917619580.770468634N/22907gene76780.1413087270.933430574.4079599070.2117602220.832294103N/22908gene132390.1322212671.4925226532.6864123710.555582110.578496564N/22909gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22906 gene25371 0.153270142 1.286411877 4.409114495 0.291761958 0.770468634 N/ 22907 gene7678 0.141308727 0.93343057 4.407959907 0.211760222 0.832294103 N/ 22908 gene13239 0.132221267 1.492522653 2.686412371 0.55558211 0.578496564 N/ 22909 gene1935 0.116143364 0.740578083 4.395665987 0.168479153 0.866206343 N/ 22910 gene26270 0.107670322 2.315104965 4.402746292 0.525832017 0.599004927 N/ 22911 gene30327 0.060455387 0.580738721 4.403240387 0.131888943 0.895072134 N/ 22912 gene26805 0.013434773 1.286431679 4.40911449 0.291766449 0.770465199 N/
22907 gene7678 0.141308727 0.93343057 4.407959907 0.211760222 0.832294103 N/ 22908 gene13239 0.132221267 1.492522653 2.686412371 0.55558211 0.578496564 N/ 22909 gene1935 0.116143364 0.740578083 4.395665987 0.168479153 0.866206343 N/ 22910 gene26270 0.107670322 2.315104965 4.402746292 0.525832017 0.599004927 N/ 22911 gene30327 0.060455387 0.580738721 4.403240387 0.131888943 0.895072134 N/ 22912 gene26805 0.013434773 1.286431679 4.40911449 0.291766449 0.770465199 N/
22908 22909 gene132390.1322212671.4925226532.6864123710.555582110.578496564N/22909 gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910 gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911 gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912 gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22909gene19350.1161433640.7405780834.3956659870.1684791530.866206343N/22910gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22910gene262700.1076703222.3151049654.4027462920.5258320170.599004927N/22911gene303270.0604553870.5807387214.4032403870.1318889430.895072134N/22912gene268050.0134347731.2864316794.409114490.2917664490.770465199N/
22911 gene30327 0.060455387 0.580738721 4.403240387 0.131888943 0.895072134 N/ 22912 gene26805 0.013434773 1.286431679 4.40911449 0.291766449 0.770465199 N/
22912 gene26805 0.013434773 1.286431679 4.40911449 0.291766449 0.770465199 NA