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RNA-Seq Statistics:

Genes Control Treated
Gene A 10 30
Gene B 30 90
Gene C 5 15
Gene D 1 3
Gene N 80 240

126           378

• Normalization between samples

• Differentially Expressed Genes (DE)
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• With the assumption that most genes are expressed equally, the log ratio should mostly be close to 0 

Genes Control Treated

Gene A 10 30

Gene B 30 90

Gene C 5 15

Gene D 1 3

Gene N 80 240
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Simple normalization 
CPM (Count Per Million mapped reads)

Normalized by:
– Total number of reads (fragments) aligned to a gene

FPKM (Fragments Per Kilobase Of Exon Per Million Fragments)

Normalized by:
– Total fragment count (number of reads or read pairs)
– Gene length (kb)

CPM : Not normalized by gene length. Longer genes tend to have higher CPM values 
than shorter genes. But that is ok, as in RNA-Seq experiments, we do not compare 
between genes, only compare the same gene between different samples. 



Genes Control Treated
Gene A 10 30
Gene B 30 90
Gene C 5 15
Gene D 1 3
Gene N 1000 240

1046           378

Simple normalization could fail



TMM normalization
(Trimmed mean of M-values )

M = log2(Test/Test_total)-log2(Ref/Ref_total)

A  =0.5 *log2(Test/Test_total*Ref/Ref_total)

“Effective library size”

M

A



DESeq2 normalization

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Geomean

34 56 23 12 10 30 23
10 6 7 11 12 8 9
65 78 67 34 56 23 50

Gene1

1. For each gene, calculate geometric mean

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

1.5 2.4 1.0 0.5 0.4 1.3

1.1 0.7 0.8 1.3 1.4 0.9

1.3 1.6 1.4 0.7 1.1 0.5

2. For each gene, calculate ratio to geometric mean

Gene 2
……
Gene n

Gene1

Gene 2
……
Gene n

1.3 1.6 1 0.7 1.1 0.9

3. Take median of these ratios as sample normalization factor (“size factor”)



Biological vs. technical replicates

Scenario Replicate
Type

Split tissue sample evenly into 2 RNA preps Technical

Split RNA sample into two library preps Technical

Split library across two sequencing flow cells Technical

RNA prep from different leaves on same plant Technical/Biological

Different clones of the same genotype in same 
treatment condition Biological

Different genotypes in same treatment condition Biological
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If we could do 100 biological replicates: 

Control samples

Treated samples

Distribution of Expression Level of A Gene

Differentially expressed genes
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Distribution of Expression Level of A Gene

The reality is, often we can only afford 3 or so replicates: 

Control samples

Treated samples



How many biological replicates?

From: Schurch et al. 2016. RNA 22:839-851
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• 3 replicates are the bare minimum for publication
• Schurch et al. (2016) recommend at least 6 replicates for 

adequate statistical power to detect DE
• Depends on biology and study objectives
• Trade off with sequencing depth
• Some replicates might have 

to be removed from the analysis
because poor quality (outliers)



Experimental design

Too many DE genes

Too few DE genes

: Control samples

: Treated samplesPCA Plots
Summarize variation over many genes
(e.g., 500 most variable)



Remove outlier samples



Control:
Replic 1 24
Replic 2 25
Replic 3 27

Treated:
Replic 1 23
Replic 2 26
Replic 3 102

Expression level of gene 1

Is this a DE gene?
You might get different answers depending 
of which software you run. 

Differentially Expressed Genes



Available RNA-seq analysis packages for DE

From: Schurch et al. 2016. RNA 22:839-851



Why DESeq2?

1. Top method recommended by Schurch et al. (2016), along with EdgeR
2. Cutting-edge tool widely used and accepted: 20,556 citations 

(Google Scholar on Nov 8, 2020)

3. Documentation (and papers) very thorough and well-written
www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

4. The first author (Mike Love) provides amazing support! Most questions that 
you Google (e.g., support.bioconductor.org) are clearly and definitively 
answered by the author himself.

5. R functions in DESeq2 package are intuitive to R users (and modifiable). 
Defining the experimental design is easy and intuitive, even for complex, 
multifactor designs:

design= ~ batch + weight + genotype + treatment + genotype:treatment

https://www.bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html


Hypothesis tests require accurate statistical model

Gaussian (Normal)

Poisson (variance=mean)
Negative binomial

(variance >= mean)

𝜎𝜎2 = 49

𝜎𝜎2 = 25

𝜎𝜎2 = 16



Negative binomial best fit for RNA-Seq data 
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Linear Model:

DESeq2 fits an negative binomial GLM
Raw count for gene  i in sample  j Controls the variance

Normalization (“size”) factor Normalized count

Design matrix
-- Control or Treatment?
-- Batch (e.g., flow cell, plate, lab)
-- Other co-factors (e.g., gender)

Coefficient

Generalized Linear Model (GLM) coefficients
-- One for each Design matrix column (factor)

= strength of effect
= log2 fold change for each gene

µij =   sj qij



Control Treated

One factor

Genotype1

Two factors

Genotype2

Genotype1
Un-treated

Genotype2
Treated

Un-treated Treated

0 hr

Time series

1 hr 3 hr 5 hr 8 hr

Type of analyses



DESeq2: Design specifications
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ treatment)

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ batch + treatment)

# Model genotype by treatment interaction:
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ batch + genotype + treatment + genotype:treatment)

# Likelihood ratio test for genotype by treatment interaction:
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment )

resLRT <- results(ddsLRT)
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DESeq2: One factor design
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ Genotype)

coldata:

(Intercept)  Genotypewt
wt1  1 1
wt2  1 1
wt3 1 1
mu1 1 0
mu2 1 0
mu3 1 0

Design Matrix:



DESeq2: Two factor design
dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, design= ~ type + condition)

coldata:

(Intercept) typesingle_read conditiontreated

1) 1 1                1

2) 1 0                1

3) 1 0                1

4) 1 1                0

5) 1 1                0

6) 1 0                0

7)           1               0                0

Design Matrix:



DESeq2: Two factor design with interaction
dds <- DESeqDataSetFromMatrix(countData=cts, colData=coldata, design= ~ strain + minute + strain:minute)

coldata: Design Matrix:
(Intercept) strainwt minute120 strainwt:minute120

1) 1 1 0 0

2) 1 1 0 0

3) 1 1 0 0

4) 1 1 1 1

5) 1 1 1 1

6) 1 1 1 1

7) 1 0 0 0

8) 1 0 0 0

9) 1 0 0 0

10) 1 0 1 0

11) 1 0 1 0

12) 1 0 1 0



Genotype by Treatment Interaction (3 genotypes)

dds <- DESeqDataSetFromMatrix(countData = cts, colData = coldata, 
design= ~ batch + genotype + treatment + genotype:treatment)

ddsLRT <- DESeq(dds, test="LRT", reduced= ~ batch + genotype + treatment )
resLRT <- results(ddsLRT)

aa Aa AA aa Aa AA



DESeq2: Empirical Bayes shrinkage of dispersion 

• Not enough replicates to estimate dispersion for individual genes
• Borrow information from genes of similar expression strength among the replicates
• Genes with very high dispersion left as is (violate model assumptions?)



DESeq2: 
Empirical Bayes 
shrinkage of fold 

change

MLE MAP

Normalized Counts Likelihood & Posterior Densities

• LFC estimates for weakly 
expressed genes very noisy 
and often overestimated



DESeq2: Empirical Bayes shrinkage of log fold 
change improves reproducibility 

• Large data-set split in half  compare log2 fold change estimates for each gene

Before shrinkage: After empirical Bayesian shrinkage:



DESeq2: Statistical test for DE
MLE MAP

Normalized Counts Likelihood & Posterior Densities

• (shrunkenLFC) / (stdErr) = Wald statistic
• Wald statistic follows std. normal dist.
• p value of LFC obtained from standard normal 

distribution

Test for DE:

• Outlier samples detected using “Cook’s distance”
• Few than 7 biological reps:   p value set to “NA”

• 7 or more biological reps:  sample replaced with mean

Automatic Outlier Detection:

• p values adjusted for multiple testing using 
Benjamini and Hochberg (1995) procedure

– Controls false discovery rate (FDR)

Multiple Testing:



False Discovery Rate
Truth

Different Same Total

Experiment
Different TP FP R

Same FN TN m - R

Total P N m

• m: total number of tests (e.g., genes)
• N: number of true null hypotheses
• P: number of true alternate hypotheses
• R: number of rejected null hypotheses (“discoveries”)
• TP: number of true positives (“true discoveries”)
• TN: number of true negatives
• FP: number of false positives (“false discoveries”) (Type I error)
• FN: number of false negatives (Type II error)
• FDR = “false discoveries” / “discoveries” = FP / (FP + TP)



DESeq2: Automated independent filtering of genes
• DESeq2 automatically omits weakly expressed genes from the multiple testing 

procedure
–Fewer tests increase statistical power more discoveries

• LFC estimates for weakly expressed genes very noisy
–Very little chance that these will detected as DE  (i.e., null hypothesis rejected)

• Threshold overall counts (filter statistic) optimized for target FDR (default FDR = 0.1)



DESeq2 analysis feedback & summary

> summary(res)
out of 14177 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)       : 273, 1.9%
LFC < 0 (down)     : 327, 2.3%
outliers [1]       : 25, 0.18%
low counts [2]     : 1650, 12%
(mean count < 4)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results

> dds <- DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates

fitting model and testing



DESeq2: Output of DE analysis

…bottom of file = genes excluded from multiple testing:

Get list of interesting genes by filtering on:
1. padj (FDR) < 0.05, and/or
2. log2FoldChange < -1 or >1, and/or
3. baseMean (optional) 
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