
Singularity – Exercises

Part 1. Working with Singularity containers

1.1 Download a pre-built image for ubuntu and save into a file

1.2 Explore the container

Alternatively, you can start the container with a shorter command:

mkdir /workdir/$USER

cd /workdir/$USER

#Pull the Ubuntu image from Singularity repository

singularity pull ubuntu.sif library://ubuntu:20.04

#Pull the same image from the Docker hub and convert to a Singularity image

singularity pull ubuntu_d.sif docker://ubuntu:20.04

#check the sizes of the two image files you just downloaded

ls -l *.sif

#Check the operating system of the host, you should see CentOS

head /etc/os-release

#Start the container, and enter the shell

singularity shell ./ubuntu.sif

#Now check the operating system of the container, you would see Ubuntu

head /etc/os-release

#List the root directory of the container, can you tell which are from the host?

which are from the container?

ls -l /

#List the home directory in the Container, you should see a single user which is

you.

ls -l /home

#your user id inside container

whoami

#exit the container

exit

1.3 Execute a command in container

Execute the Linux command within the container without using the interactive shell

1.4 Common options

--no-home option: This option tells Singularity not to mount the home directory. This is
desirable to fully contain the environment and not use use the Python and R libraries
installed in your home directory. Compare the results with and without "--no-home option".

--bind option: mount a host directory in the container. In this example, the host directory
/workdir/$USER will be mounted as /data directory in the container. If with no ":", e.g. "--bind
/workdir/$USER", the directory will be mounted as the same path inside container.

Part 2. Build Singularity images

2.1 Convert a Docker image to a Singularity image

Pre-built docker images are available for many bioinformatics software. In this exercise you will

./ubuntu.sif

head /etc/os-release

exit

#The following command run "ls -l" inside the container

singularity exec ./ubuntu.sif ls -l /workdir/

#A short cut of the previous command

./ubuntu.sif ls -l /workdir/

#The following command should throw an error because /programs directory is not

mounted

singularity exec ./ubuntu.sif ls -l /programs/bwa-0.7.8/bwa

#In the following command, you mount the /programs directory inside container and

run bwa from inside container

singularity exec --bind /programs ubun_d.sif /programs/bwa-0.7.8/bwa

 cd /workdir/$USER

 singularity exec ./ubuntu.sif ls /home/$USER

 singularity exec --no-home ./ubuntu.sif ls /home/$USER

singularity exec --bind /workdir/$USER:/data ubuntu.sif ls /data

download the docker image built for the Busco software, and convert it to singularity image. Then
run the busco command:

"./busco.sif" is a shortcut for "singularity exec ./busco.sif"

2.2 Modify an existing singularity image file

In this exercise, you will modify the image file you downloaded in the first exercise "ubuntu.sif",
and install "python" in this image.

First acquire the "fakeroot" privilege by running this BioHPC command. The "fakeroot" privilege is
require to build a Singularity image.

Convert the ubuntu.sif file into a Singularity sandbox

Start the sandbox as container with a writable shell and install python 3.8

Convert the sandbox into a Singularity image file, and test the image file

singularity pull busco.sif docker://quay.io/biocontainers/busco:5.2.2--

pyhdfd78af_0

./busco.sif busco -h

fakeroot

cd /workdir/$USER

singularity build --fakeroot --sandbox myubuntu ./ubuntu.sif

singularity shell --fakeroot --writable myubuntu

apt update

apt upgrade

apt install python3.8

ln -s /usr/bin/python3.8 /usr/bin/python

which python

python -V

exit

In practice, it is recommended to use the sandbox for testing, and write the tested steps into a def
file (a text file), and then build the new image from the script file. This way, you have a record how
the image was created.

Create a def file "myubuntu.def"

Now run the command

singularity build --fakeroot myubuntu.sif myubuntu/

singularity exec myubuntu.sif python -V

BootStrap: library

From: ubuntu:20.04

%environment

%files

%post

 apt -y update

 apt -y upgrade

 apt-get -y install software-properties-common build-essential cmake wget

nano

 add-apt-repository universe

 apt -y update

 apt -u install python3.8

 ln -s /usr/bin/python3.8 /usr/bin/python

singularity build --fakeroot myubuntu2.sif myubuntu.def

