
File ownership and access
permissions on Linux

Robert Bukowski
Bioinformatics Facility

BioHPC Users’ meeting 2/19/2019

Outline

File ownership, representation and meaning of access
permissions

Adjusting ownership on permissions of existing files and
directories

Ownership and access permissions of new files – how to set
default behavior

Complications

File ownership and permissions - overview

File or directory

Owner Group Others=All-Group - Owner

Permission and
extra bits; set to 0
or 1 using chmodr w x r w x r w x

group1

group2

user1

user2

…. ….

Access Lists (ACL):
Additional groups (or individual
users) – extension of the main
Group

Permission bits; set
to 0 or 1 using
setfacl

setuid
setgid

sticky bit

Extra bits

(Use getfacl to read ACLs)

Objects with ACLs have a “+” after permission string
drwxrws---+ 4 bukowski panzea 4096 Feb 14 17:32 ttt1

Meaning of permission bits

Bit Effect on file if set Effect on dir if set

r File can be read Directory content (file and subdir names)
can be shown by ls

x File can be executed One can cd into the directory (x required
for all subdirs in the path)

w File can be modified (x required
for all subdirs in the path)

File can be renamed, moved, or
removed only if x is set for all
subdirs in the path and w is set
for parent directory

Files and subdirs can be created,
renamed, or removed in the directory
[even if there is no w on these files
themselves (!!)]; x also required for all
subdirs in the path

NOTE:

To delete a file it is sufficient to have wx permission on the parent directory
w permission on the file itself is not needed to delete it

Meaning of extra bits

Bit As shown by ls –al (example) Effect on file Effect on directory

setuid
(implies x)

-rwsr-xr-x 1 jarekp cbsuguest1
45583 Feb 12 12:22 some_script.sh

File will execute as owner
(here: jarekp), no matter who
runs it

None

setgid
(implies x)

drwxr-s--- 4 bukowski cbsuguest1
4096 Feb 12 11:57 my_dir

File will execute as owning
group (here: cbsuguest1),
no matter who runs it

New files and directories
created inside my_dir will
inherit group (here:
cbsuguest1); new dirs will
have setgid set as well

sticky -rw-rwxr-t 1 bukowski panzea
172092320 Feb 22 2011
flygenome.fa

None File can be deleted or
renamed only by the owner,
even if w on directory allows
others to delete/remove files

Adjusting ownership and permissions for existing files: examples
Recursively change owner to user1 and group to group1 for /local/storage/some_dir and all its
content (only root or user1 can do it like this)

chown –R user1.group1 /local/storage/some_dir

Recursively change group to group1 for /local/storage/some_dir and all its content (owner has to
belong to group1)

chgroup –R group1 /local/storage/some_dir

Set permissions for group and change permissions for “others” for a single file
chmod g=rwx,o-w /local/storage/some_dir/my_file

Recursively set permissions for group and revoke all permissions for “others” for a directory and its content.
Group permission for all files will be rw- and for directories rwx

chmod -R g=rwX,o= /local/storage/some_dir

ACLs:
Add (or modify if already there) the ACL for user1 on one file

setfacl -m u:user1:rwx /local/storage/some_dir/my_file

Recursively add (or modify if already there) the ACL for group group2 on a directory and all its content
setfacl -R -m g:group2:rX /local/storage/some_dir

Objects with ACLs have a + after permission
string

Permissions displayed in Group triad represent
the mask – typically the union (logical OR) of
permissions for the Group and all ACLs

ls -al
drwxrws---+ 4 bukowski panzea 4096 Feb 14 17:32 ttt1

How to recognize objects with ACL attached

Use getfacl to check the details:

getfacl ttt1
file: ttt1
owner: bukowski
group: panzea
flags: -s-
user::rwx
user:jarekp:rwx
group::r-x
mask::rwx
other::---

New files (directories):
Who owns it?

Owner: the user who created the file (directory)
Group: the primary group of the owner

• Exception: if setgid bit is set on the parent directory – then the new object inherits the
group of the parent directory

What are the permissions?

Permissions = (Default permissions) AND (~ umask)
umask is user-dependent; default umask = (0022) = (000 000 010 010) says which permissions to turn off

Assuming default mask, permissions for new objects are

New files: rw- r-- r --
New directories: rwx r-x r-x

• Exception: if parent directory has default ACLs attached to it, permissions on new object will obey these ACLs

Example of user-defined umask:
umask 0027

in .bashrc will turn off all permissions for
“others” on new files

NOTE: unless “exceptions” are used, default permissions depend on user (owner) rather than location – not good for file
sharing!

Example: Setting inheritable ownership/permissions on a directory tree

Set desired main group owner and permissions (including ACLs) on the existing files in the directory tree, e.g.,

chgroup –R mylabgroup /local/storage/ourdir
chmod –R g+rwX /local/storage/ourdir
setfacl –R –m u:user1:rwX /local/storage/ourdir
setfacl –R –m g:group1:rX /local/storage/ourdir

Make mylabgroup the default for all new object within the directory tree (i.e., set setgid bit for all exisiting
directories) – will override the primary group of the owner

chmod g+s $(find /local/storage/ourdir –type d –print)

Set default ACLs (i.e., ACLs to be applied to new objects) – will override umask set by the owner

setfacl –R –dm g::rwX /local/storage/ourdir
setfacl –R –dm u:user1:rwX /local/storage/ourdir
setfacl –R –dm g:group1:rX /local/storage/ourdir

Complications

New File

touch, vim, bwa, …

cp, mv, rsync

NFS

Globus

Samba

scp

wget

A “new file” can be created by many different tools processes) – each with its own “ideas” about ownership and
permissions…

Gluster

Tool Obeys setgid Applies default ACLs

cp YES YES

cp -p YES NO

rsync –a YES YES

mv NO (also: preserves
original owner, group)

NO

scp YES YES (but may change mask, which changes effective
ACL permissions)

FileZilla YES YES

Samba YES YES

Gluster YES NO (ACL not supported)

NFS YES NOT supported by client
ACLs set on server show up as modified group mask on
client (possible security hole!)
Files created on client get their ACLs applied on server,
but with mask inherited from client…

chmod
(applied to
group)

YES Modifies ACL mask (changing effective permissions)

New files (directories): what are the permissions?

(New) File (New) Directory

Default permission 0666 = (000 110 110 110) = (rw- rw- rw-) 0777 = (000 111 111 111) = (rwx rwx rwx)

Default umask 0022 = (000 000 010 010) 0022 = (000 000 010 010)

Actual permissions 0644 (= 000 110 100 100) = (rw- r-- r--) 0755 = (000 111 101 101) = (rwx r-x r-x)

Actual permissions = (Default permissions) AND (~ umask)

umask can be changed (from its default 0022) by the user (e.g., putting command umask 0027 into .bashrc will change umask to
0027, making any new files and directories off-limits for “others”)

