
BioHPC workshop Linux for Biologists: Exercises
Part 2

Exercise 1: using scp to transfer files between Linux
machines

From remote to local machine: On server cbsulogin3.biohpc.cornell.edu there is a directory
/workdir/Workshop/dir2transfer with some test files in it – all readable to you. Copy this
directory (with al its content) to your scratch directory on your workshop machine.

(note the dot " . " at the end of the last command - this means the destination is your current
directory). If asked whether your are sure about connecting (it will happen if connecting to
cbsulogin3 for the first time), answer 'yes'. If asked, provide your BioHPC password. When
done, verify the transfer and examine the directory you copied

From local to remote machine: In your scratch directory (/workdir/your_id) on your workshop
machine, create a text file called your_id_file (replace your_id with your actual BioHPC user
ID), containing a string “ This is my test file ”. Use your favorite text editor (e.g., nano) to
create this file.

Copy the newly created file onto cbsulogin3.biohpc.cornell.edu into the directory
/workdir/Workshop

In order to verify that the file has been successfully copied, we will list the files in the remote
directory using ssh :

(provide your BioHPC password if prompted). Note the use of ssh in the command above:
instead of logging in to a remote machine and opening a terminal on it, we are just running a
single command (ls -al).

Exercise 2: batch download of files from sequencing facility

Open your e-mail, find a message with subject line “Test Illumina distribution e-mail” with an
attachment download.sh .

Transfer the attachment file onto your Linux machine. You can do one of the following:

cd /workdir/your_id

scp -r your_id@cbsulogin3.biohpc.cornell.edu:/workdir/Workshop/dir2transfer .

ls -l dir2transfer

cd /workdir/your_id

scp your_id_file your_id@cbsulogin3.biohpc.cornell.edu:/workdir/Workshop

ssh your_id@cbsulogin3.biohpc.cornell.edu ls -al /workdir/Workshop

af://n0
af://n2
af://n14

Option 1:

open the attachment in a text editor on your laptop and copy its contents to clipboard (using
the mouse)
in Linux machine terminal, open a new file (in a directory where you want your files
downloaded to) using a text editor of your choice (e.g., nano or vim)
paste the contents of the clipboard to the new file on Linux machine and save that file.

Option 2:

Save the attachment file on disk on your laptop
Use a file transfer technique of your choice (interactive sftp client like FileZilla, or
command-line scp) to transfer the saved file from laptop to your Linux machine, to the
directory where you want the fastq files to be downloaded to.

Once the file download.sh is ready on the Linux machine:

log in to the Linux machine (if not yet done so)

cd to the directory where the download.sh file has been deposited

execute the file

Once the download completes (should take about 1 second):

Verify (using the ls -al command) that the files have ben downloaded and that they have
correct sizes (the same as in the notification e-mail)

Verify that MD5 sums of both files are the same as in the notification e-mail. An MD5 sum is a
unique signature of a file, computed from the file's content using a certain algorithm. If the MD5
sums of two files are identical, you can say that the files are identical. Therefore, checking the
MD5 sums is often used to verify the correctness of the file transfer.

First, compute the MD5 sums of the downloaded files, saving he output to a file on disk, then
print that file to the screen and confront with MD5 sums in the notification e-mail:

Do the MD5 sums agree?

Now un-compress the fastq files

When the operation completes, you should see the original files file_1.fastq and
file_2.fastq (verify with ls -al).

Open each file in a text editor on Linux machine (nano or vi) and examine the file's format.
Note there are 4 lines corresponding to each read: the header line with read's name, the line with
read's sequence, another line containing just " + " (sometimes followed by the read's header), and
the last line containing base calling qualities encoded as ASCII characters.

sh ./download.sh

md5sum file_1.fastq.gz file_2.fastq.gz >& md5sums.log

cat md5sums.log

gzip -d file_1.fastq.gz file_2.fastq.gz

Count reads in each fastq file

(Note: wc -l will return the number of lines in each file, which is 4 times the number of reads)

Exercise 3: run a simple BLAST search

In this exercise, we will perform a BLAST search of 9 randomly selected human cDNA sequences
against the database Swissprot database of amino acid sequences. We will use the program
blastx (a part of blast+ suite of programs) which internally performs a 6-frame translation of
each DNA query and compares each of these translations to all reference amino acid sequences
from the database.

Prepare input data

First, we shall prepare the input data. In your scratch directory /workdir/my_id , create a
subdirectory blast_test and navigate to it:

Now copy the FASTA file with query sequences (this file is located in the workshop directory):

While you're at it, take a peek inside this file by opening it in nano or less . Note that each
sequence may be broken into multiple lines preceded by a header line with the sequence's name
and possibly various metadata that may be available. Each header line starts with an ">"
character, and header lines are the only places in a FASTA file where this character may occur.
Thus, counting the number of lines containing " > "

gives us the number of sequences in the file (which in this case should be 9). Note the use of the
pipe construct: the output from the grep filter, i.e., all lines of seq_tst.fa containing " > ", is
treated as input to wc -l , which counts such lines.

Now copy the Swissprot database files into a separate subdirectory directory we will make for
this purpose within /workdir/your_id/blast_test (which at this point should be your current
directory):

Note the use of a wildcard " * " in the source argument of the copy command above - it mans that
all files from /shared_data/Linux_workshop/databases with names starting with string
swissprot are to be copied to our subdirectory databases . To verify, list the content of the new
directory:

wc -l file_1.fastq file_2.fastq

cd /workdir/your_id

mkdir blast_test

cd blast_test

cp /shared_data/Linux_workshop/seq_tst.fa .

grep ">" seq_tst.fa | wc -l

mkdir databases

cp /shared_data/Linux_workshop/databases/swissprot* ./databases

af://n56
af://n58

You should see 7 files there. These files are a result of conversion of the original FASTA file with
Swissprot amino acid sequences into a format that blast+ suite of programs works with. This
suite contains a tool (called makeblastdb) to perform such formatting on any FASTA file you wish
to treat as a BLAST database. For the purpose of this exercise, this formatting step has been
completed ahead of time so that the files you just copied are ready to use.

Run the BLAST search

You may want to read through this whole exercise before starting it.

Before starting this task, open another terminal window on your Linux machine. You can either
log in again via ssh or start a new shell within your screen or VNC session (if you have one open).
In one of the windows launch the top program to show a dynamically updated list of your
processes:

In the other window (where top is not running), make sure your current directory is
/workdir/your_id/bast_test

Launch BLAST by entering the following command (all in a single line):

As you see above, the blastx program accepts a lot of options, some of them obligatory, some
optional. The meaning of the options we use is the following:

-db points to the database files to be used. blastx needs to know the prefix of the database file
names, i.e., the common part of the file names preceded by any directory path necessary to find
the files - in our case this prefix is ./databases/swissprot .

-query specifies the fasta file with query sequences to be processed - in our case:
seq_tst.fa .

-out tells the program where to store the output - here it will be a file hits.txt in the current
directory

- num_alignments : number of BLAST hits for which semi-pictorial representation of the alignment
will be printed to the output file - here: just one, top hit, for all other hits we will just have the
alignment score information, but the alignment itself will not be shown.

Any screen output and/or error messages (STDOUT+STDERR) the command will produce will be
saved in file run.log in case error analysis is needed later on (note that the BLAST results
themselves will be saved in hits.txt and are therefore not a part of output to terminal).

The ampersand "&" at the very end of the command will send the task to the background, i.e.,
after you hit ENTER, your terminal will return to the prompt and you will be able to run other
tasks or commands while your BLAST search is running behind the scenes.

ls -al databases

top -u your_id

cd /workdir/your_id/bast_test

blastx -db ./databases/swissprot -num_alignments 1 -query seq_tst.fa -out

hits.txt >& run.log &

af://n71

Monitor the run

The runs you just submitted will take about 1 minute. While it is in progress, you may do certain
things to monitor it:

Look at the output from top you started earlier in the other terminal window (or shell in screen
or VNC). You should see your process blastx somewhere on top of the list, consuming about
100% of CPU (i.e., one thread).

Run ls -al a few times in the current directory - you should see the file hits.txt being created
and growing in size (however, for this small example, the output file may be stored in memory
and not be written to disk until the very end of the BLAST run).

List processes running on the machine, filtering the ones that belong to you. The blastx process
should be on the list.

When the run completes (in about 1-2 minutes), the blastx process will drop off the top and
ps lists, the size of file hits.txt will stop growing, and you will receive a termination message
in the main terminal window (the one you launched the task in).

Examine the output

First, check the file run.log for any suspicious messages that may indicate the failure of the run
(open this file musing nano or less).

Again, using nano or less , open and examine the output file hits.txt . Detailed interpretation
of this file is beyond the scope of this workshop. In short, for each query sequence, you should
see a list of hits (database sequences and coordinates where the given query aligns), along with
alignment score measures, such as e-value and bit score. For the best hit, you should also see the
actual alignment.

Run again using 2 CPUs

Recall the blastx command you just ran (using up/down arrows or history, for example) and
modify it by adding one more option: -num_threads 2 . You may also want to modify the name of
the output file (e.g., to hits2.txt). After modifying - hit ENTER to run the task again. Monitor the
top output in the other window. How much %CPU is the program now using? Is it going to finish
faster than when run on 1 CPU?

When finished, compare the new output file hits2.txt with the previous one, hits.txt :

If you get no output at all, this will mean the files are identical. They should be, since they result
from the same BLAST search, just run in slightly different ways.

Exercise 4 : Basic shell scripting

ps -ef | grep your_id

diff hits2.txt hits.txt

af://n86
af://n93
af://n96
af://n102

To illustrate some basic functionality of shell scripts, we will now revisit the BLAST job from the
previous exercise. The BLAST command used in that exercise was rather long and cumbersome,
and would become even more so if more options were specified. Here we will create a shell script
which will simplify and generalize launching a BLAST search for any query file and at the same
time provide some extra functionality.

With /workdir/your_id/blast_test as your current directory (cd there if needed), create
(using nano) a new file called blast_script.sh :

nano blast_script.sh

with the following content (you may want to copy paste this into the file rather than type
everything in):

Make sure you save the script file! Once it is ready, change its attributes so that it is seen by Linux
as executable by you:

chmod u+x blast_script.sh

In essence, a script is a set of shell commands that will be executed in order of appearance when
the script is run. The very first line determines what program will be used to interpret and
execute the commands that follow (here: the bash shell). Except for the first line, anything
following the # character is treated as comment (i.e., not interpreted).

The script you just created works like a command taking two arguments: the name of the query
file and the number of CPUs to use. In the script, these arguments are 'intercepted' and referred
to as $1 and $2 , respectively. In order to make the script easier to read, two variables are
defined, QFILE and NCPU , in which the argument values are stored. The values of these
variables are used later in the script and referenced as $QFILE and $NCPU . If the second

#!/bin/bash

Collect the two arguments (quewry file name and number of CPUs to run on)

and assign easy to remember variables to them

QFILE=$1

NCPU=$2

If the number of CPUs not given, assume 1

if ["$NCPU" == ""]

then

NCPU=1

fi

Relate the output file name to input file name (i.e., if the input file is

AAA, then the output file will be AAA.hits.txt)

OFILE=${QFILE}.hits.txt

blastx \

-db ./databases/swissprot \

-num_alignments 1 \

-num_threads $NCPU \

-query $QFILE \

-out $OFILE \

>& run.log

argument is not given on command line, it is assumed to be 1 (the conditional if - then - fi
statement serves this purpose).

The essence of the script is the blastx command you practiced previously. In addition to
options already discussed in previous exercise, there is one more option, -num_threads , which
tells the program how many CPU threads to use (the second argument given to the script, stored
as NCPU and referenced as $NCPU). Furthermore, the values of the -query and -out
parameters are also read off the variables, QFILE and OFILE , respectively. Notice that the name
of the output file, stored in variable OFILE , is constructed out of the name of input file by adding
a suffix .hits.txt .

In the script, the lengthy blastx command has been split into multiple lines, each ending with
the backslash \ character (make sure that this character is really the last one - not followed by
any blank spaces, for example). This split of a long command into shorter lines is often
convenient (makes the script more readable) but not necessary - the whole command could have
been written all in one single line.

To summarize: the script we just created illustrates a few (and definitely not all) useful
possibilities of shell scripting: passing of arguments, defining and referring to environment
variables, conditional statements, and splitting of long command strings into multiple lines.

Now that we understand what our script is supposed to do, let's launch it given the query file
seq_tst.fa and assuming we want to use 2 CPUs for the task:

./blast_script.sh seq_tst.fa 2 &

The whole script will be running in the background (note the & at the end). As you observe the
top output in the other terminal window or run the ps -ef | grep my_id command to list your
processes, you should see all the commands programmed in the script including the shell
instance running the script appearing consecutively as they are being invoked. In this case, since
all operations before the blastx are very fast, the latter process will be the only one you notice
taking any CPU. In fact, it should be taking close to 200% as it was the case with the stand-alone
blastx command run on 2 threads. Once the run ends and you list the directory content, you
should see the output file seq_tst.fa.hits.txt .

Exercise 5: Multiple independent tasks (and more scripting)

As an example of processing of multiple independent tasks, we will consider compressing three
files using gzip . First, copy the three example files to your /workdir/your_id directory:

You should now see three files, BBB_1 , BBB_2 , and BBB_3 in your directory when your run ls -

al . Now create a shell script called gzip_script.sh (open a new file in the nano editor). You
can use one the three equivalent versions of that script:

Version 1:

cd /workdir/your_id

cp /shared_data/Linux_workshop/auxfiles/BBB_* .

af://n119

Version 2:

Version 3:

In all three versions of the script, the tree files will be compressed consecutively, one after
another, so that only one gzip command will be running at any given time. While in script
Version 1 the commands are programmed explicitly, Versions 2 and 3 use the shell's 'for loop'
construct to accomplish the same thing: the command between keywords do and done is
repeated with loop index i assuming values specified in the for statement. These values may
be strings (as in Version 2) or numbers (as in Version 3). They are referred to as ${i} (or - if no
string concatenation is involved - simply as $i). BTW, the index variable does not have to be
called i - it can be called j , nnn , kitty , or any string you want.

Save your script upon exit from nano , make it executable, and run it:

Observe the top -u your_id output in the other terminal and/or output from the ps -ef |

grep your_id command (run it several times 30 s or so apart). You should see only one gzip
process at a time, first operating on BBB_1 file, then BBB_2 , and finally on BBB_3 .

Now edit your gzip_script.sh file and put an ampersand (&) at the end of each gzip
command. For example, if you used Version 3 of the script, the modified file will look like this:

Prepare the example files again (by decompressing the compressed versions you just obtained)

#!/bin/bash

gzip BBB_1

gzip BBB_2

gzip BBB_3

#!/bin/bash

for i in BBB_1 BBB_2 BBB_3

do

 gzip ${i}

done

#!/bin/bash

for i in {1..3}

do

 gzip BBB_${i}

done

chmod u+x gzip_script.sh

./gzip_script.sh &

#!/bin/bash

for i in {1..3}

do

 gzip BBB_${i} &

done

and run the script again:

./gzip_script.sh

Notice that even though you did not run the whole script in the background (no & after the
command above), it exited immediately and your terminal returned to the prompt. This is
because each of the gzip commands has been submitted in the background inside the script.
After the first of these commands was submitted, the script did not have to wait for it to finish,
but instead it submitted the second one - also in the background, so that the third gzip
command could have been run right after that. After submitting the third gzip to the
background, the script did not have anything else to do, so it exited. However, all three gzip
commands it left behind keep running simultaneously in the background. In the output from top,
you should now see three such processes.

Exercise 6: Multiple independent tasks on a limited number
of CPUs

Suppose we have a large number (thousands) of files to compress, but only a few processors on
which to do this. In order not to overwhelm the machine, we need a mechanism that would run
only a small number of such tasks simultaneously while keeping the rest queued up until CPUs
become available. This exercise illustrates how this can be done.

We will use the three example files from Exercise 5. Prepare the files in /workdir/your_id :

Using nano editor, create a file - call it tasklist - containing the list of commands to be
executed:

As an aside, note that the file above could be easily created using the shell's for loop construct:

This is pretty similar to the for loop we used in scripts of Exercise 5, except that the index list in
the for statement is now constructed from the output of the ls -1 BBB_* command (which just
returns a list of all file names starting with BBB_). The statement echo simply prints out what
follows it to the terminal, and that gets re-directed (and appended) to the file tasklist on disk.
Of course, there is really no advantage of using a for loop as above to create a tasklist for just
three files, but for a list of length, say, 1000 - this would really be the only option. Note also, that
the for loop above can be run directly from the terminal prompt by ENTERing the lines one-by-
one, or you may choose to create simple shell script which you can later modify.

gunzip BBB_*.gz

gunzip BBB_*.gz

gzip BBB_1

gzip BBB_2

gzip BBB_3

rm -f tasklist

for i in `ls -1 BBB_*`

do

echo gzip $i >> tasklist

done

af://n141

Now that the list of tasks is ready, we will execute them using 2 CPUs, so that initially two first
gzip commands will run simultaneously, while the third will wait until one on the initial two
completes. Such procedure of queueing multiple tasks to be run on limited number of CPUs
without overwhelming those CPUs is often referred to as load balancing. In this exercise, we will
practice two simple ways to do this.

Option1: use the CBSU in-house load-balancing script perl_fork_univ.pl . Simply run

In the command above, tasklist is the list of tasks (here: gzip commands) you created
earlier, and ' 2 ' is the number of CPUs to use (which may of course be bumped up if you have
enough tasks and sufficient CPUs at your disposal). All processes created by the command above
will run in the background and any terminal output the script generates will be saved in the file
called log .

Option 2: use GNU parallel tool

GNU parallel is a standard Linux tool with functionality similar to (and somewhat broader than)
that of perl_fork_univ.pl . Before using parallel for the first time it is good to silence the
'citation request', which would otherwise appear every time you run the tool. To get rid of the
request, run the following:

then type will cite and hit ENTER.

Once the warning is silenced, run the three commands from your tasklist with load balancing
on 2 CPUs as follows

Whichever of the two Options you choose, you should observe at most two CPUs being used at
the same time, executing your gzip tasks. The first two will be started simultaneously, and the
third will wait until one of the first two completes.

/programs/bin/perlscripts/perl_fork_univ.pl tasklist 2 >& log &

/programs/parallel/bin/parallel --citation

/programs/parallel/bin/parallel --jobs 2 < tasklist >& log &

	BioHPC workshop Linux for Biologists: Exercises Part 2
	Exercise 1: using scp to transfer files between Linux machines
	Exercise 2: batch download of files from sequencing facility
	Exercise 3: run a simple BLAST search
	Prepare input data
	Run the BLAST search
	Monitor the run
	Examine the output
	Run again using 2 CPUs

	Exercise 4 : Basic shell scripting
	Exercise 5: Multiple independent tasks (and more scripting)
	Exercise 6: Multiple independent tasks on a limited number of CPUs

