Linux for Biologists

Robert Bukowski, Qi Sun
Institute of Biotechnology
Bioinformatics Facility
(aka Computational Biology Service Unit - CBSU)

Workshop website: https://biohpc.cornell.edu/ww/1/Default.aspx?wid=138

Contact: brc bioinformatics@cornell.edu

mailto:brc_bioinformatics@cornell.edu
https://biohpc.cornell.edu/ww/1/Default.aspx?wid=138

Topics

What is Linux?
Logging in to (and out of) a Linux workstation using ssh client
Terminal window tricks

d

d

d

O Linux directory structure

O Working with files and directories
O Persistent multiple shells

d

Graphical applications on Linux

Week 2

O File transfer between a Linux computer and the world
O Running programs (non-biological aspects)

O Very basics of shell scripting

L Harnessing the power of multiple processors

Week 3
O Linux in action: processing of large text files common in bioinformatics

What is an operating system?

ﬁser interface — text (bash)

g

User interface — graphical

\ User applications
V=N (bwa, BLAST, Firefox,...)

Operating System
(OS)

Operating Systems

U Windows

O Mac OS (distant cousin to Linux)
U Android

O ios

O Linux OS (Linux kernel + GNU software)

= open source

= developed by community (started by Linus Torvalds in 1991)

= 500+ various ‘distributions’ (customized software collections working with Linux

kernel with own package management tools)

» RedHat (commercial — pay for support)
» CentOS (free — community RedHat) — that’s what’s installed on BioHPC
» Ubuntu
» Debian
> ...

Why Linux?
1 Majority of bioinformatics/computational biology software developed only

for Linux

1 Most programs are command-line (i.e., launched by entering a command in
a terminal window rather than through GUI)

1 While various graphical and/or web user interfaces exist (e.g., Galaxy,
CyVerse Discovery Environment, BieHRCWeb), but often struggle to provide

level of flexibility needed in cutting-edge research

1 Versatile scripting and system tools readily available on Linux allow
customization of any analysis, including big data (Week 3)

O Learning Linux is a good investment

Logging in to a Linux machine

What you need:
* network name of the Linux machine (e.g.,
cbsum1c2b007.biohpc.cornell.edu)
" anaccount, i.e., user ID and password valid on the Linux
machine
" on your laptop: remote access software (typically: ssh
client or VNC client)

» (legal) way to circumvent firewalls likely to be present
between your laptop and the Linux machine you want to
reach

ssh: Secure Shell — provides access to alphanumeric terminal
VNC: Virtual Network Connection - provides access to graphical features (Desktop, GUlIs,
File Manager, Firefox, ...)

Network obstructions: how to reach workshop
machines in BioHPC Cloud

* Be on Cornell campus in Ithaca and physically connect laptop to
campus network

* |f off-campus, install and launch Cornell VPN (Virtual Private Network)
connection on laptop

* have to have Cornell NetID - for eligibility and instructions check
https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid

* info about Cornell VPN: https://it.cornell.edu/cuvpn

* If off-campus and no NetID: connection still possible — more about it
later...

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid
https://it.cornell.edu/cuvpn

SSH - Windows

Install PUTTY — open source SSH package for Windows

Start PuTTY (double-click)

Type fully qualified server name
you want to connect to, e.g.
cbsulc2b007.biohpc.cornell.edu

Click “Open”

PuTTY Security Alert X

The server's host key is not cached in the registry. You

! have no guarantee that the server is the computer you
think it is.
The server's ssh-ed25519 key fingerprint is:
s5h-ed25519 255 14b2:3%:dd:eSidceaacd®chcbfeaddmedTo
If you trust this host, hit Yes to add the key to
PuTTY's cache and carry on connecting,
If you want to carry on connecting just once, without
adding the key to the cache, hit Mo,
If you do not trust this host, hit Cancel to abandon the
connection.

Yes Mo

ﬁ PuTTY Cenfiguration

Cateqary:

=|- Session

= Terminal

- Keyboard

- Bell

- Features

= Window

- Appearance
- Behaviour
- Translation
+- Selection

=) Connection
.. Data

- Proxy
- Telnet
- Rlogin
+- 55H

About

Help

Basic options for your PuTTY session

Specify the destination you wart to connect to
Hast Mame (or |P address) Part

|c|:usurn'I-::Ebl}l}?.hiuhpc.cu:umell.edu | |22

Connection type:

(JRaw () Telnet () FRlogin @) 55H () Seral

Load, save or delete a stored session
Saved Sessions

Default Settings Load
AWS

chsulogin biohpe comell edu

domek-backup S
domek-centos Delste
Close window on exit:
() Aways () Never (®) Only on clean exit

You can open several terminal windows, if needed
(i.e., log in several times)

SSH - Windows

Click for many useful options, e.g.,

)) Password won’
‘Duplicate Session’ assword won’t

/ show up when typed
4

P = =][==]

login as: bukowski
bukowskif@cbhsumlcZkh007's password:

Welcome to the BREC Bioinformatics Facility BioHPC Cloud!
server: chsumlcZb007, 8 cores, leGE RAM, CentlOS 7.6.1810

User: bukowski attempting to use machine chsumlc2Zb007 at Tue Apr 14 07:57:04 202

0
[bukowskifcbsumlc2b007 ~15 ||

Logging in via ssh from Mac (or other Linux box)

Use native ssh client (already there - no need to install anything)

= Launch the Mac’s terminal window and type

ssh -Y bukowski@cbsum1c2b007.biohPc.cornell.edu

(replace the cbsum1c2b007 with your reserved workstation, and “bukowski” with
your own user ID). Enter the password when prompted.

= When connecting for the first time, a message will appear about “caching server hostkey” —
answer “Yes”. The message will not appear next time around

= while you are typing your password, the terminal will appear frozen — this is on purpose!

= -Yis optional —it enables X11 forwarding —important if you intend to run graphical applications

= You may open several terminal windows, if needed, and log in to the workstation
from each of them.

Off-campus and no VPN

1. ssh from your laptop to cbsulogin.biohpc.cornell.edu,
cbsulogin2.biohpc.cornell.edu, or
cbsulogin3.biohpc.cornell.edu

2. From the terminal you just opened on cbsulogin (or
cbsulogin2 or cbsulogin3), ssh to your reserved BioHPC
machine using the Linux/Mac procedure, e.g.,

ssh userID@cbsumlc2b007.biohpc.cornell.edu

or just

ssh cbsumlc2b007

SSH - connect from outside without VPN
(Mac/Linux version)

@ jarekpp@chsum1c2b007: -~

[root@domek-centos ~]# ssh jarekpp@cbsulogin.biohpc.cornell.edu
jarekppicbsulogin.bichpc.cornell.edu's password:
Last login: Mon Apr & 18:05:28 2020 from 23.133.160.63

R

¥ Welcome to BioHPC Labk login server! o
¥ This machine iz for remote logins and o
¥ data transferz only - NOT for computing. o
* Software installed on BioHPC Lab machines "
¥ iz NOT supposed to ke installed nor work =
¥* on this machine. If you want to do computing *
¥ please go to the compute nodes! =
¥ For more info on BicoHPC Lak please go to =
* http://fchsu.tc.cornell.edu/lab/lab.aspx x

AR AR AR AR R R R R R R R R R R R R

[Jarekpp@cbsulogin ~]% ssh chsumlcZb007
jarekpplchbsumlc2bl0T7's password:
Last login: Mon Apr & 18:07:05 2020 from cbsulogin

Welcome to the BRC Bioinformatics Facility BioHPC Cloud!
server: cbhsumlcZ2k007, 8 cores, 16GE RAM, Cent0S5S 7.6.1810
[Jarekpp@chbsumlcZb00T ~15 w
18:07:38 up 241 days, 22:24, 5 users, load average: 0.11, 0.0&, 0.05
TSER ITY FRCM LOGING@ IDLE JCEBO PCPT WHAT
jJarekpp pts/So cbhsulogin 18:07 2.00s 0.08s 0.0l w
[jarekppBcbsumlczbooT ~15]

ssh access to BioHPC: summary

On Ithaca campus, with NetID

cbsuXX
w MAC: ssh -Y userID@cbsuXX.biohpc.cornell.edu S
| > i |
PC: PuTTy to cbsuXX.biohpc.cornell.edu q
Outside of Ithaca campus, with VPN (Cornell NetID required)
cbsuXX
_ — MAC: ssh -Y userID@cbsuXX.biohpc.cornell.edu L=
with > i ,.
VPN PC: PuTTy to cbsuXX.biohpc.cornell .edu e Es
cbsulogin or
. cbsulogin2 or
Outside of Ithaca campus, no VNP g- cbsuXX
cbsulogin3

MAC: ssh userID@cbsulogin.biohpc.cornell. edu

PC: PuTTy to cbsulogin.biohpc.cornell. edu

- W

e

Logging out of an ssh session

While in terminal window, type exit or Ctrl-d - this will close
the current terminal window

* Iflogged in via cbsulogin — need to hit Ctrl-d twice: first
- to exit your machine (e.g., cbsum1c2b007), and
second — to exit cbsulogin

One machine, multiple users

Linux is a multi-access, multi-tasking system: multiple users
may be logged in and run multiple tasks on one machine at the
same time, sharing resources (CPUs, memory, disk space)

= This is what is happening during this workshop
= After workshop: when using BioHPC machines for real

work, you reserve it all for yourself. You can chose to
allow a few other users (collaborators) or not

= BioHPC reservation system is not a part of Linux —itis an
add-on we created to better manage access of multiple
users to multiple machines

How to access BioHPC machines in the
future (after workshop)

BioHPC User’s Guide
http://biohpc.cornell.edu/lab/userguide.aspx

Slides from workshop “Introduction to BioHPC”
https://biohpc.cornell.edu/lab/doc/Introduction to BioHPC v9.pdf

http://cbsu.tc.cornell.edu/lab/userguide.aspx
https://biohpc.cornell.edu/lab/doc/Introduction_to_BioHPC_v9.pdf

Interacting with Linux in terminal window

1 User communicates with Linux machine via commands typed
in the terminal window

= Commands are interpreted by a program referred to as shell — an
interface between Linux and the user. We will be using the shell called
bash (another popular shell is tcsh).

= Typically, each command is typed in one line and “entered” by hitting
the Enter key on the keyboard.

= Commands deal with files and processes, e.g.,
= request information (e.g., list user’s files)
= Jaunch a simple task (e.g., rename a file)
= start an application (e.g., Firefox web browser, BWA aligner, IGV viewer, ...)

= stop an application

= |n this part of the workshop we’ll learn mostly about file management
commands

Try a few simple commands:

List files and directories (more about it in a minute):

1ls
ls -al

What kind of machine am | on (name, operating system, kernel version, etc.)?

uname -—a

Where on disk am | now (i.e., Print Working Directory)?

pwd

Who else is logged in? For how long?

w
who

Use Manual Pages to learn more about each command — see all possible command
options

man 1ls man uname

Useful tricks

(may not work on all ssh or VNC clients...)

O Helpful tricks to avoid excessive command typing

Use copy/paste. Any text “mouse-selected” while holding the left mouse
button is copied to clipboard. It may then be pasted, e.g., into a command, by
clicking the right mouse button (PuTTy) or the middle button (when working
through the console in 625 Rhodes).

Use Up/Down arrow keys — this will cycle through recently executed
commands.

Use the TAB key — this will often present you with a list of choices after typing
a part of a command — no need to remember everything.

Useful tricks

1 Helpful tricks to avoid excessive command typing

history command: list all recently used commands — can copy a desired
command and paste it to execute again, or refer to a command by its index

Examples:

history

(list all remembered commands)

history | less

(list all remembered commands page by page)

history | grep workdir

(list all remembered commands containing string “workdir”)

Screen output from a command may be saved to disk

Each command produces two output streams: standard output (STDOUT) and
standard error (STDERR). Normally, they both are displayed on the screen.

But they can be saved on disk (“redirected”)

Save to separate files (file names are arbitrary) ...

who > OUT.log 2> ERR.log

... or save to a single file

who >& OUTERR.log

These files are text files and can be looked at with any text processing tool (more
about it later)

less OUTERR. log page through the file (use more to page forward)
cat OUTERR. log print the file on screen
nano OUTERR.log open file in text editor

Files and directory tree

Files and directory tree

Data and programs are stored in files on disk storage

Each file has a name and is located in a directory (a.k.a. folder)
directory — a logical location on disk
(directory, name) pair uniquely specifies the file

a directory may hold files and/or other directories
directories form tree structure

Example of directory tree

root

snow
scan

How to refer to a file?

Full path (starts with /):

Relative path (to /home/hiro)

Relative path (to /home/hiro/scripts)

Relative path (to /home/enzo)

/home/hiro/scripts/nam-shub.enki

scripts/nam-shub.enki

nam-shub.enki

../hiro/scripts/nam-shub.enki

—L /L /L3 /L4 P
bin/ / lib/ / local/ / sbin/ / bl /
— 1
scripts[/

‘current directory’

pwd command will show what it is
relative paths will be assumed relative to it
Is command (with no arguments) will show content of it

home directory

typically: /home/userID
user’s private (logical) space on disk storage
becomes ‘current directory’ right after logging in

Traversing directory tree

Right after logging in or opening a terminal window, “you are” in your home directory (e.g., /home/bukowski).

Where am I?

pwd

(print working directory) — show the current directory; any relative path you specify will be relative to this place

Navigating through directories

cd

Change (current) directory; without additional arguments, this command will take you to your home directory

cd /workdir/bukowski/indexes

Change (current) directory from wherever to /workdir/bukowski/indexes.

cd indexes

Change (current) directory to indexes (will work if the current directory contains “indexes”)

cd ../

Change (current) directory one level back (closer to the root)

cd ../../../

Change (current) directory three levels back (closer to the root)

cd ./

Change (current) directory to the same one (i.e., do nothing). Note: ./ or just . refers to the current directory.

Working with Directories

Creating directories

mkdir /home/bukowski/my new dir
Make a new directory called “my_new _dir” in /home/bukowski

mkdir my new dir
Make a new directory called “my_new_dir” in the current directory

Removing directories

L;mdir /home/bukowski/my new dir
emove directory called "my_new_dir” in /home/bukowski — will fail if the directory is not empty

rm -Rf /home/bukowski/ my new dir
Remove directory called “my_new_dir” in /home/bukowski with all its content (i.e. all files and
subdirectories will be gone)

rm —-Rf my new dir
Remove directory called “my_new_dir” in current directory with all its content (i.e. all files and
subdirectories will be gone)

Listing content (files and subdirectories)
of a directory

Is
(list)

1ls

List files and directories in current directory (in short) format

pipe

ls —-al Output from first

List all files and directories in current directory in long format command is ”pi ped”

as input to the

ls —-al /home/bukowski/tst

second

List content of /home/bukowski/tst (which does not have to be the current directory)

ls —-alt *.txt

Lists all files and directories with names ending with “txt” in the nt directory, sorted according to

modification time (use |s —altr to sort in reverse)

ls -alSsS

ry sorted according to size (use Is —alSr to sort in reverse)

Lists content of the current di

ls —-al | less

Lists content of the current directory using pagination — useful if the file list is long (SPACE bar will take you to
the next page, “q” will exit)

LOTS more options for Is —try | man Is | to see them all (may be intimidating).

ls -al

Listing content of a directory

total S0

drwxr—-xr—-
drwxr—-xr—-
drwxrwxr-x
drwxr-xr-x=
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
—-EW—-rwW-E——
—-EW—-rwW-E——
drwxrwxr-x
—-EW—-rwW-E——
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
drwxrwxr-x
—EWXr——E——

H o L e BLYnon

i

[EY I S o o | B O R R

@ biukowes ki@ cbsumerk st2:-

bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski
bukowski

bukowski 4086 Dec 3 11:558 454
bukowski 40596 Jan 6 11:30 454 2.5.3
bukowski 4096 Jan 6 11:30 bin
bukowski 4096 Nowv 22 15:55 Desktop
bukowski 4096 Jan 26 13:49 ecoli tst
bukowski 4056 Feb 15 17:25 GATE t=t
bukowski 4096 Dec 15 11:35 ige
bukowski 3595 Jan 21 13:47 igw. log
bukowski 401 Nowv Z4 11:07 perl test.txt
bukowski 4096 Feb 185 17:23 prograons
bukowski 231 Dec 1 10:16 schedfile
bukowski 4096 Felbh 1 11:26 stacks tst
bukowski 4086 Dec 1 11:27 tst
bukowski 4096 Now 29 14:22 t=stl
bukowski 4096 Now 29 15:52 t=t3
bukowski 4096 Nowv 29 15:41 tst4d
bukowski 4096 Dec 21 15:17 tsth
bukowski 4096 Jan 17 17:14 tst_blat
bukowski 4096 Dec 22 10:56 tst toxedo
bukowski 106 Feb 2 10:08 ttt.pl

m

il ‘I

permissions
(“d” means
thisis a
directory)

I

| [

Owner and Last modification time

group

Size (in bytes) -
meaningful for
files, but not
directories

File name (directories in
executable files in green)

’

Storage

Linux directory structure is continuous, i.e. regardless of the
physical location of storage, logically it all appears as part of
single directory tree starting from root (/).

But differents parts of the tree may have different physical
locations (local or network)

affects storage access speed

Not easy to tell which storage is local and which network just by
directory name. Remember the setup on BioHPC machines:

* Networked storage + Local storage
/home /workdir
/shared_data /SSD
/programs /local_data

Will look different on other machines or centers — always check description!

1-12TB

Storage organization at BioHPC

/workdir ;home S~ o
rograms ~ < .
/SSD i Programs ~ < File server
[shared_data | ~ _ ~~ o
S, oS =~ 1.5PB
~ ~ S TS~ ~
~ ~ ~ ~ ~ -~ ~ o
S o S - _ - ﬂmlisk/home \
~ - Vg
= N = ’<\ 7’
- ~
_-=" o T ==> /disk/programs
/home — ~ i —"fd\\ i
workdir - == >
/ /programs — = ~ Network/ A N
/SSD pros 7z — 9\ /disk/shared_data
[shared_data) — — — — — — v— == - /\ /
/7 7 7 P /
7 P s P
’ “ s Pad
, < -
-, Phd P
7 7 7
7’ 7 ”
7’ 7 - . .
- e Never process files located in
/workdir i heme ” P network directories!
/SSD i | /programs ~ | -~ :

/shared_data”

- t | t Instead:

Local file Network file Copy files to /workdir or
systems systems /SSD and process them there.
(fast, few (slow, many

When finished, copy results back

users,
users, to /home/yourID

temporary) permanent)

df command...

... tells how much disk space is available on various file systems:

df -h

EF bukowski@chsum1c1b00Z~

[bukowskiZchsumlclb002 ~]15 4df -h

local

3% ,l‘r].DC‘.EI.]. e] /Workdir’

Filesystem Size Used Avall Use® Mounted on

Jdev/mapper/rhel-root 100G 216G 80G 21% /

devtmpfs T.8G 0 7.8C 0% fdev

tmpfs 7.80 0 7.8¢ 0% /dev/shm

tmpfs T7.8G¢ 802M 7.0G 11% /run

tmpfs T.8C 0o 7.8CG 0% fsys/fs/cgroup

Sdev/mapper/rhel-local 813G 24G TG

Jdev/=dbl 497 149M 349M 30% /boot

tmpfs 1.6 8.0KE 1.60C 1% /run/user/4az
150 o1 &0 AT L =W LS L o —

128.84.180.1778topl:128.84.180.1768tcpl: flustrel 1.5F 867T 574T 61% /home

chsugfsl: fhome 233T 134T 100T 58% fglusterfs{hume

tmpfs 1.6G 0 1.6G 0% fron/unser/992

tmpfs 1.6G 0 1.6G 0% /ron/user/5041

These are network devices — starting with

“computername:/”

[local_data

=== networked
/home
/programs
/shared_data

Checking my disk space

How much disk space is taken by my files?

[du -hs
(displays combined size of all files in the current directory (“.”)
and recursively in all its subdirectories)

[du -h --max-depth=1
(as above, but sizes of each subdirectory are also displayed)

May take some time if you have a lot of small files

Working with files

There are many types of files. Here are the most important:

[Text files (human-readable; can be viewed and modified using a text
editor)

* Text documents (e.g., README files)
« Datain text format (e.g., FASTA, FASTQ, VCF, ...)

* Scripts:
* Shell scripts (usually * . sh or *.csh)
* Perl scripts (usually * .p1)
e Python scripts (usually * . py)

Working with files

J Binary files (not human-readable; cannot be viewed using a text editor)
* Executables (e.g., samtools, bwa, bowtie, firefox)

e Data in binary format (e.g, BAM files, index files for BWA or Bowtie,
formatted BLAST databases)

* Compressed files (usually * .gz, * . zip, * .bz2,..., but extensions
not necessary) — often text files re-formatted to save space on disk or
packaged directory trees

Working with files

There are many types of files. Here are the most important:

 Symbolic links: pointers to other files or directories.

cd /programs/bin/samtools
ls —-al samtools

lrwxrwxrwx 1 root root 30 Apr 16 2013 samtools -> ../../samtools-1.2/samtools

In the example above, file /programs/bin/samtools/samtools isa
symbolic linkto /programs/samtools-1.2/samtools.

Note the “I” character in the first column of output from “1s —-al”.

Working with files

Where do files come from?

They are created by various programs, e.g.,
* Text editors

* File compression tools

* Aligners

* Assemblers

* System commands (copy, move, rename, etc.)

* Screen output redirection (>, >&)
 Remote copy tools (scp, sftp, wget, Firefox)

Creating an empty file (zero size):

touch my file

my fileis empty (soone can’tsay if it is a text file or binary file...)

Working with files

File and directory names — best practices

d

d

Names are case-sensitive (MyFile, myfile, myFile are all different!)

Use only letters (upper- and lower-case), numbers from 0 to 9, a dot (.), an
underscore (_), a dash (-) [good example: This_is-myFile99.abc]

Avoid other characters, as they may have special meaning to either Linux, or
to the application you are trying to run. Do not use “space” or other special
characters [bad example: This is my&File#799.abc]

Use of special characters in file names is possible if absolutely necessary, but
will lead to problems if done incorrectly.

“Extensions” (like . zip, .gz, .ps, .sam, .bam, .fastq., .fa, .gff...) are
commonly used to denote the type of file, but are typically not necessary to
“open” or use a file. While working in command line terminal you always
explicitly specify a program which is supposed to work with (open) this file.

Basic operations on files - summary

Listing

5w
ls —-al

Copying

cp <path to source> <path to destination>

Moving and/or renaming

mv <path to source> <path to destination>

Deleting

rm <path to file>

Deleting whole directory with all its content

rm —-Rf <path to directory>

Copying a file

Working with files

cp

<source file> <destination file>

Examples:

cp sample data.fa /workdir/bukowski/sample.fa

(copy file sam?le_data. fa from the current directory to /workdir/bukowski and give the copy
a name sample.fa; destination directory must exist)

cp /workdir/bukowski/my script.sh

(copy file myscript.sh from /workdir/bukowski to the current directory under the same file
name)

cp /home/bukowski/*.fastq /workdir/bukowski

(copy all files with file names ending with “ fastq” from /home/bukowski to
/workdir/bukowski; destination directory must exist)

cp -R /workdir/bukowski/tst5 /home/bukowski

(if tst5 is a directory, it will be copied with all its files and subdirectories to directory
/home/bukowski/tst5; if /home/bukowski/tst5 did not exist, it will be created).

Try

man cp

for all options to the cp command.

Working with files

Moving and renaming files

mv <source_file> <destination_file>

Examples:

mv_my file one my file two

(change the name of the file my_file one in the current directory)

mv my file one /workdir/bukowski

(move the file n?y '_file_one from the current directory to /workdir/bukowski without changing
file name; the file will be removed from the current directory)

mv /workdir/bukowski/my file two ./my file three

(move the file my_file_two from /workdir/bukowski to the current directory changing the name
to my_file three; the file will be removed from /workdir/bukowski)

TryEan mv|for all options to the mv command....

Working with files

Removing (deleting) files

rm <file name>

Examples:

rm my file one

(de/ete-.> file my_file_one from the current directory)

rm /workdir/bukowski/my file two

(delete file my _file _two from directory /workdir/bukowski)

rm —-Rf ./tsth

(if tst5 is a subdirectory in the current directory, it will be removed with all its files and
directories)

Trylman rafor all options to the rm command....

Working with files

What kind of file is this?

Since there are no strict naming conventions for various file types, it is not always
clear what kind of file we deal with. When in doubt, try thcommand:

l cd /programs/samtools-0.1.11] this is an executable
file samtools Z// program....

samtools: ELF 64-bit LSB Ee&xecutable,) AMD x86-64, version 1
(SYSV), for GNU/Linux 2.6.9, mically linked (uses shared>

libs), for GNU/Linux 2.6.9, not stripped

... Which uses “shared”
libraries”, i.e., may not
work if moved to
other machine where
these libraries are
absent

Working with files

Looking for a file

[find . —name PHG47_ sorted.bam —print]

(look for all files called PHG47 _sorted.bam in the current directory and recursively
in all its subdirectories)

[find /datal —-name “*PHG47*” -print]

(look for all files having “PHG47"” in the name, located in /datal or recursively in its
subdirectories)

Try [man finci for many more options

Working with files: archiving and compression

To save disk space, we can compress large files if we do not intend to use them for a
while. Files downloaded from the web are typically compressed and sometimes need
to be uncompressed before processing can take place.

Common compressed formats and compression/decompression tools:

Format Tool
(extension)

gz gzip Compress a single file

bz2 bzip2 Compress a single file

Zip Zip Make compressed archive (single file) of a directory
structure; same as on Windows

tar tar Make an archive (single file) of a directory structure

tgz (tar.gz) tar Make a compressed archive (single file) of a directory
structure

Compression works best (i.e., saves most disk space) for text files (e.g., large
FASTQ files).

Getting help about compression tools:
* gzip -h, bzip2 --help, zip, tar --help
* man gzip, man bzip2, man zip, man tar (may beintimidating...)

File compression: examples

* gzip (g2)

gzip my file
(compresses file my_file, producing its compressed version,my file.gz)

gzip -d my file.gz
(decompress my_{file.gz, producing its original version my file)

* bzip2

bzip2 my file
(compresses file my_file, producing its compressed version,my file.bz2)

bunzip2 my file.bz2
(decompress my_file.bz2, producing its original versionmy file)

Archiving and compression: examples

* Zip

zip my file.zip my_ filel my_ file2 my_ file3
(create a compressed archive called my_ files.z zip, containing j three files:
my_filel, my_file2, my file3)

zip -r my file.zip my filel my dir
(if my_dir is a directory, create an archive my_file.zip containing the file
my_filel and the directory my_dir with all its content)

zip -1 my file.zip
(list contents of the zip archive my_file.zip)

unzip my files.zip
(decompress the archive into the constituent files and directories

Archiving with tar: examples

* tar

tar -cvf my file. tar my filel my file2 my dir

(create a compressed archive called my_files.tar, containing files my_filel,
my_file2 and the directory my_dir with all its content)

tar —-tvf my file.tar
(list contents of the tar archive my _file.tar)

tar -xvf my files.tar
(decompress the archive into the constituent files and directories)

Archiving and compression with tar: examples

* tgz (also, tar.gz — essentially a combo of “tar” and “gzip”)

tar -czvf my file.tgz my filel my file2 my dir
(create a compressed archive called my_files.tgz, containing files my_filel,
my_file2 and the directory my_dir with all its content)

_tar —-tzvf my file.tgz |

(list contents of the tar archive my _file.tar)

tar -xzvf my files.tgz
(decompress the archive into the constituent files and directories)

Working with text files

Linux features standard tools for text file processing:

Text editing vi, nano, gedit,
Page through the file less, more
Select lines from top, bottom, head, tail
or middle of file

Select lines containing a string grep

Select columns cut

Append rows to a file cat

Append columns to a file paste

Sort a file over column(s) sort

Count lines, words, characters wc¢

Advanced, text-focused awk, sed

scripting tools

General scripting tools (not
only in Linux)

perl, python

Working with text files: editors

vim

Available on all UNIX-like systems (Linux included), i.e., also on BioHPC workstations
(type vi or vi file_name)

Free Windows implementation available (once you learn vi, you can just use one editor
everywhere)

Runs locally on Linux machine (no network transfers)

User interface rather peculiar (no nice buttons to click, need to remember quite a few
keyboard commands instead)

Some love it, some hate it

Nnano

Available on most Linux machines (our workstations included; type nano or nano
file_name)

Intuitive user interface. Keyboard commands-driven, but help always displayed on
bottom bar (unlike in vi).

Runs locally on Linux machine (no network transfers during editing)

gedit (installed on BioHPC workstations; just type gedit or gedit file_name to invoke)

X-windows application — need to have X-manager running on client PC.
May be slow on slow networks...

vi basics

Opening afile:
vi my_reads.fastq (open the file my_reads.fastq in the current directory for editing; if the file does not exist, it will be created)

Command mode: typing will issue commands to the editor (rather than change text itself)
Edit mode: typing will enter/change text in the document

<Esc> exit edit mode and enter command mode (this is the most important key — use it whenever you are lost)

The following commands will take you to edit mode:
i enter insert mode

r single replace

R multiple replace

a move one character right and enter insert mode
o start a new line under current line

(o) start a new line above the current line

The following commands operate in command mode (hit <Esc> before using them)
X delete one character at cursor position

dd delete the current line

G go to end of file

1G go to beginning of file

154G go to line 154

S go to end of line

1 go to beginning of line

:q! exit without saving

W save (but not exit)

:wq! save and exit

Arrow keys: move cursor around (in both modes)

Working with text files

NOTE: Text files prepared using advanced text processors (e.g., MS
Word) will cause problems when used as input to Linux applications.

If you have to use such files on Linux — always save as “Plain Text”

Controlling file access: user groups in Linux

L On a Linux system, users may be organized in groups

O Be default, a group is created for each user (with group name the same as user ID)
= Example: a group bukowski is created along with user bukowski

O Other users may belong to a given user’s group
= Example: user jarekp may belong to group bukowski

O Other groups may be also defined (not named after any user IDs) and contain

multiple users

O A user may belong to multiple (up to 15) groups (one of them is primary)

O Groups are set up by an administrator

0 User’s membership in groups determine this user’s access to files
= Each file and directory has an owner and a group, each with separate set of

access permissions, and another set of permissions for everybody else

File permissions

/[drwxrwxr-x\ 16 root ak735 0001 16384 Feb 18 11:38 .
drwxr-xr-x 343 root root T3T728 Feb 24 16:55 ..
drvx————-—- 12 z2ab227 aab227 16384 Feb 26 09:35 =2akbiz7
drwx—————-— 8 aj=s592 ajs58z 12382 Jan 13 10:00 aj=s5az
drwx—————— 7 akT73s akT735 12371 Cct 4 17:29 ak73E
—Ir'W—EW-I—— 1 am2472 ami472 10 Feb 7 10:23 am?472
drvx—————— 8 a=s2847 as=s2847 16384 Nov 8 10:11 =z=2847
ArwXrwir-x 3 a=2847 akT35_0001 8238 Dec 5 16:18 data
drwr—————— 16 deckhe debig4 36864 Feb 21 08:33 dcthi4
drwx—————— 25 fg237 fg237 16384 Feb 11 12:42 fg237
drwx—————— 20 lda42 lda4? 16384 Feb 18 10:31 1da42
drwx—————— 5 1m529 Im529 8363 Oct 4 21:45 1m529
—Ir'WX—————— 1 root root 60 Jun 17 2013
drwx—————- 6 nrd44 nrd44 8400 Feb 17 11:35 nrd44

\ drwr—————-— & rbSes rbS6es 12364 Cct 4 21:46 rkxSes

drwxrwx rwx: User(owner), Group, Others

“d”: directory (or “-” if file); “r”: read permission;
permission (or permission to “cd” if it is a directory);

o II

“w”: write permission;

le perm|55|on

aw. .7,

X": execute

Examples:

data:
= jsadirectory (“d” in the first column)

= everybody can read and “cd” to it, but not write (“r—x” in the last three columns)
= owner (as2847) and everybody in the group (ak735_0001) can also write to it

am2472:

= js a file readable by everybody and writable by owner and his group

= the file is not executable by anyone
rb565:

= jsadirectory accessible only by owner

Changing file permissions

chmod command — some examples

chmod o-rwx /home/bukowski

make my home directory inaccessible to others (“0”)

chmod ug+x my script.pl

make the file my_script.pl (in the current directory) executable by the owner (“u”) and the
members of the group (“g”).

chmod a-w /workdir/bukowski/my file

deny all (“a”), including the owner, the right to write to the file my_file (in
/workdir/bukowski)

Try man chmod for more information (may be somewhat intimidating!)

Want to make your files accessible to some (but not all) other users? Contact us!
= we would need to make sure that you and those other users are in the
same user groups

Multiple shells and graphics

Running multiple shells at the same time

[Start a few separate ssh sessions (e.g., can use “Duplicate session” function in
PuTTy)

e Separate window for each shell

O screen: a program which allows running multiple shells within one “screen
session” in a single terminal window

e All shells run in a single window (which can be divided, but not too
convenient)

e can switch between the shells with a few keystrokes
* can detach the whole screen session (with all shells running) and re-attach
it later

* Screen session survives connection/laptop crashes — perfect way of keeping
long jobs running

Using screen

Linux shell (ssh session)

Log in through ssh and

[cbsul ~$ screen]
launch screen

!

screen session

Ctrl-a c
/Ctrl—a c|

[cbsul ~$ cd /dirl] [cbsul ~$ blastn] [cbsul ~$ 1s -al

shell 1 (Ctrl-d to close) shell 2 (Ctrl-d to close) shell 3 (Ctrl-d to close)

Ctrl-a c creates a new shell within the screen session
Ctrl-a p and Ctrl-a n switch back-and-forth between the shells
Can do different things in each shell, in different directories, etc.

Ctrl-d closes the current shell (i.e., the one currently displayed); others remain active

Using screen

Detach screen session Linux shell (ssh session)

Ctrl-a d [cbsul ~$ screen]
or

Network problem

or
Laptop crash

[cbsul ~$ cd /dirl] [cbsul ~$ blastn] [cbsul ~$ 1s -al

shell 1 (Ctrl-d to close) shell 2 (Ctrl-d to close) shell 3 (Ctrl-d to close)

Disconnected screen session keeps running on its own, with everything within it.

Using screen

Linux shell (ssh session)

While logged in [cbsul ~$ screen -d —r]
through ssh.... ¥

I ...re-attach the screen session

/ \,

screen session

[cbsul ~$ cd /dirl] [cbsul ~$ blastn] [cbsul ~$ 1ls -al

J

shell 1 (Ctrl-d to close) shell 2 (Ctrl-d to close) shell 3 (Ctrl-d to close)

Re-attach the screen session using screen -d -r
Prior to re-attaching, verify the session is running: screen -list

Will see all shells as we left them, and progress of any programs we left running

screen: running multiple shells in one window

After logging in, type screen

Most useful screen commands:

screen -S ABC
screen -list

screen -d -r
screen -d -r [sessionID]

Ctrl-ac
Ctrl-an Ctrl-ap Ctrl-aN
Ctrl-a “

Ctrl-aS Ctrl-a |

Ctrl-a TAB

Ctrl-aX Ctrl-aQ

Ctrl-ad
Ctrl-d

screen -X -S [name] quit

Start a new session named ABC (‘-S ABC’ optional)
List all your screen sessions

Re-attach previously detached (or unintentionally disconnected) session —
can be done upon next login

Create a new shell in a session; can be repeated multiple times

Switch to next (n), previous (p), or N-th shell within a session

List all shells in a session, switch to one (arrows, ENTER)

Split window horizontally (S) or vertically (|), then ‘Ctrl-a TAB’ to jump to

new split and ‘Ctrl-a c’, ‘Ctrl-a n’, ‘Ctrl-a p’, or ‘Ctrl-a N’ to create or import a
shell to it; this will show 2 or more shells in one window

Jump between shells in a split window

Remove current shell (X), or all shells except current (Q) from split window;
removed shells will keep running (use Ctrl-a N, Ctrl-a n, or Ctrl-a p to access)

Detach a session (all shells will continue running)
Exit form current shell (or from whole session, if in last shell)

Kill session “name” (obtained from screen -list)

For more features/functionality — type screen —h or Ctrl-a ? (within session)
Sessions are persistent — will survive connection problems, turning off laptop, etc.

Graphics on Linux workstations

http://biohpc.cornell.edu/lab/doc/Remote access.pdf

In short, there are two options:

* Login through ssh with X11 forwarding (check option in PuTTy, or ssh =Y ona
Mac). The laptop must be running an X-windows manager. Start GUI application in
ssh terminal, and the GUI window will appear on your laptop screen. Individual GUI
windows are rendered this way.

* Login to a Linux graphical mode using VNC (Virtual Network Computing)
e Start a VNC server on Linux machine (typically installed by default)
 Download and start a VNC client on your laptop, connect to VNC server on

Linux machine
* Your laptop will display whole Linux graphical desktop (similar to a Windows or

Mac desktop)
* VNC session is persistent, just like ‘screen’ session

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

Logging in to a Linux workstation
(GUI)

You need software client to connect to your machine via VNC.
We recommend RealVNC VNC Viewer for all platforms.

€ a e Q Search

https://www.realvnc.com/download/viewer/

ReAalLvNC O]

Download VNC Viewer to the device to connect from

Make sure you've downloaded VNC to the computer you want to control.

= & OH ¥ o5

Windows Mac OS X Linux Raspberry Pi i0s Android Chrome Solaris HP-UX
DOWNLOAD VNC VIEWER 5.3.2 OR Why not
try our beta?
EXE x64 ~
| =
L —— Ry

Supported platforms Important information

RealVNC uses cookies. For more information, please read our privacy policy. [Ne{eIgig

)
G solLaris @UX @,‘

AlX

FEATURES DOWNLOAD PRICING NEWS SUPPORT ABOUTUS 5IGN IN

File Edit Wiew History Bookmarks Favorites Tools Help o %
BioHPC Lab: My Reservati.. > [l RealVNC | Download VNC .. > 4+
W B ¥ A okl @ =

~

Logging in to a Linux workstation via VNC client
(GUI)

In web browser, navigate to http://biohpc.cornell.edu/, log in (if not yet logged in), click on User:your_id, select tab My
Reservations

File Edit View History Bookmarks Tools Help

E Linux for Biologists - Introduct X [=illa T el all.I B % =TGN Tl

&« c ‘Q‘ O a https://biohpc.cornell.edu/lab/labresman.asp E b w i In @ © f =

@ cesu @ 0Fc B Freevile WTC [Freeville WU G Google Maps @) Ithaca NV Cloud Cover () Blodgett Mills @ jareksastro @) My LastPass Vault [Trello @ Cloud Cover NOAA Flw ZenDesk

institute of bictechnology >> brc »> bicinformatics > internal > bichpc cloud: my reservations

o Click “Connect VNC”, to initialize VNC
BIOHPC CLOUD: connection, or “Reset VNC” re-initialize
: MY RESERVATIONS existing connection

| BIOINFORMATICS FACILITY

Manage My Reservations

My active reservations (reservations starting in fisture are marked in red):

Fes# | Start End Computer 05 System info Other nzers | Credit Account | Action ¢ VNC port#
Dell PowerEdze MA0D | | H
115872 | 4/9/2020 1:20:46 PM | 4/10v2020 1:20:00 PM | cbsum1cIb007 | Limm | 8 cores; 16GE FAM; 1TE HDD; chaulm01 Change Cancel Connact VINC top S e e Ct re SO u t I O n yo u
VM supported
Other active reservations I can access (reservations starting in fisture are marked in red): / wa nt
Raz# | Start End Computer | 05 System info Owner | Other users / Credit account Action ::f..
Suparmicro
/252016 3/25/2023 . SYS-6028R-TR : - . - - - o, CESU Collaboration
65888 51405 EM 5:00:00 DM chaudc1 Limmx 12 cores; 156G jarekp | omc4d 1cj34 mm22 esh33 kiz283 mm2E42 jarekpp rvl8 12 javl4 bmd4d Larze M v Comnect VIMC top
RAM: 16T8 HDD;
Jr— a0 Dell Pracision T110 bukowski gisun pas4S jarekpp mingj @253 eshi3 deil sjm336 mbb262 mrT2 tmo46 kis283 arphillips nkl3 G278 sej65 pjb3® Ij34 chengzou amj 77 Zm22 jdw207 ns868 mm2842
68317 il il cheufirvd | Limm | 4 cores; 4GB RAM: | ACL | Ifsemayo jav246 emrd7 er226 IF bt262 tarS6 emi23s jlg3 T4 hw40 jws420 ajs602 meS72 tw483 ecTO6 tot38 yW2326 beti74 jpI4T6 eoren bm646 1po28 hijazi ag2484 szoodwin | ACL Connect VNC top
53038 PM 12:00:00 AM - . - N I
78.1TB HDD, mza3 stittes tir230 t2550 8

=z

You can connect to your Linux reserved workstations using VNC protocol at | 1280x800 |~ | from this page, for more on VINC please read "Access with VINC” in the Lab's User Guide.

(Add user with labid m to my reservation # i @ |

http://cbsu.tc.cornell.edu/

Logging in to a Linux workstation
(GUI)

File Edit View History EBookmarks Favorites Tools Help - 0O
() BioHPC Lab: UNC Connect... % | +

& @ hitps://cbsutc.cornell.edu/lab/vnc.aspx?rid=2536 C || Q Search {.‘Z B ¥+ #H | @ A

CORNELL UNIVERSITY B
INSTITUTE OF BIOTECHNOLOGY

search (@) Comell Pages () Comell People

Home BRC Services BioHPC Lab BioHPC Web Contact Us User: jarekp

institute of biotechnolesy = bro > bisinfonmatics = internal =% bichpc lab: vnc connection

BIOHPC LAB:
VNC CONNECTION

Your VNC session at chsudesktop0l.tc.cornell.edu has been successfully initialized!

Preferable method of connecting to your vou machine with VINC 1s to use an external VINC client.
Windows users can use Real VNC FNC Fiewer, which you can download here (choose free option).
Mac users can use Chicken of the VNC. Real VNC Viewer 1s also available for MAC (here).

To connect, launch vour VNC client, type in machine name (cbsudesktop01) and port number (5901) and connect!
Typically machine name and port number are used together: chsudesktop0l.tc.cornell.edu:3901 .

Due to security restrictions Java VINC viewer may not work in vour browser. In most cases, you will have to lower security settings to "Mimimum"
in order to start the applet (see this link for details). You can access the applet using this link http://cbsudesktop01 tc comell edu:3801 .

Return to My Reservations. .

<

VNC: starting the client and logging in

M vNC Viewe [=][=] =] I cbsudesktopns:5e0

File View Help

-y
(chsudesktop05:5901 3 |

(= [&@ =]

There are no connections in your address book at present.

Connecting to chsudesktop03:5901...
Sign in to your RealVNC account to automatically discover team computers,

Alternatively, enter the VNC Server IP address or hostname in the Search bar to connect direct.

Stop

VMC Server: chsudesktop05:3901

0 Unencrypted connection

o

The connection to this VNC Server will not be encrypted.

YMC Server chsudesktop05:5901
———
Password: | &) | Your authentication credentials will be transmitted securely, but all

IR b 4 subsequent data exchanged while the connection is in progress may be
emember passwor

susceptible to interception by third parties,

[]Don't warn me about this again on this computer.

VNC: logged in

Right-click anywhere within blue desktop, select Open Terminal or
.... click Applications -> Accessories -> Terminal

cbsudesktop05:5901 (cbsudesktop05.biohpc.comell.edu:1 (bukowski)) - VNC Viewer E
«* Applications Places Terminal Mon 08:21e & o) O

filezilla deskiop

UEASEERTDIES
bukowski@cbsudesktop05:~

File Edit View Search Terminal Help

Filesystem Size Used Avail Use% Mounted
;
Ly /dev/sdb5 299G 34G 266G 12% /
24G 0 24G 0% /dev

5 246 29M 24G 1% /dev/shm
246 1.7G 226G 8% /run
24G [¢] 24G 0% /sys/fs/

28T 1.6T /data_cb|
1014M /boot

1.6T /local

hilezZiaEREIdeskion 4.7G

1.2P
233T

st 16\ d=3ictgn. i)

[bukowski@cbsudesktopes ~1$ [§

Bl bukowski@cbsudesktop05:~ 1/4

Kill window, but session keeps
running — can re-connect later

VNC: two ways to exit

" N
cbsudesktop05:5901 (cbsudesktop0S.biohpc.comell.edu:1 {bukowski)) - VNC Viewer E]"
+* Applications Places Terminal Mon 08:23 @ AT ING)

and kill whole sessio & FEthernet (em1) Connected

filezilla,deskiop qehesembler : Robert Bukowski

bukowski@cbsudesktop05:~

File Edit View Search Terminal Help Account Settings

299G
24G
24G
24G
24G

28T

1014M
1.6T
4.7G

84.180.176@tcpl:/lustrel 1.2P
233T

iilezilla S REdESKIoD
4.7G
4.7G

4n 4.7G

8% d=giign.orig M [bukowski@cbsudesktop@s
[bukowski@cbsudesktop05
[bukowski@cbsudesktop®5

| Bl bukowski@cbsudesktop05:~ 1/4

Connecting with VNC form external network without VPN
Mac and Linux

Enable your VNC connection first (see slide 82)
Open local terminal window on your Mac or Linux computer

Use the following command to connect to BioHPC. You can replace
cbsulogin with cbsulogin2 or cbsulogin3, cbsuxxx with your server name,
5901 with your port no and biohpcid with your BioHPC userid.

ssh -N -L 5901:cbsuxxx:5901 biohpcid@cbsulogin.biohpc.cornell.edu

Now you can connect to your VNC by typing localhost:5901 in your VNC
Viewer software.

Connecting with VNC form external network without VPN
Windows

* Enable your VNC connection first (see slide 82). Note what is your VNC

port.

rg PuTTY Configuration é @
Category:
. Logging - Options controlling SSH port forwarding
H =)+ Terminal ort forwardin
* O p e n yo u r P UTTY a n d fl | I O Ut g:;'board E?Jocal ::n_sg accept connections from other hosts
cbsulogin.biohpc.cornell.edu | romns siimie s ia
(or cbsulogin2 or cbsulogin3) By
- Translation
a S ta rget S e rve r. gz:zzt:n Add new forwarded port:
- Connection = Source port 5901
" Eg:y Destination chsum1c2b001:5901
e On the left panel scroll down to E <
= SSH
Connection -> SSH -> Tunnels L=
-.)'Iszuinels
i.- Bugs -
About Open] [Cancel

Connecting with VNC form external network without VPN

Enable your VNC connection first (see slide 82). Note what is your VNC port. Type
the port as shown below with the destinations server name and click Add. Now you

Windows

can connect to your VNC by typing localhost:5901 in your VNC Viewer software.

#2 PuTTY Configuration ? x
Category
.. Features ~ Options controling SSH port forwarding
= ‘."Jin:Ew Port forwarding
BEE:ES:E [] Local ports accept connections from other hosts
e Translation [[] Remote ports do the same (SSH-2 only)
- Selection Forwarded ports: T
¢+ Colours
[Connection
- Data
- Proy
- Telnet Add new forwarded port:
. Rlogin ource port 5901 Add
[=-S5H
- Kex estination |cbsum1c1bDD1 901 |
- Host keys (® Local () Remote () Dynamic
- Cipher ® Auto OlPvd O lIPve
[+ Auth
~TTY
- K11
- Tunnels
- Bugs
- More bugs
About Help Cancel

ﬁ PuTTY Configuration

=+ Window

[#- Selection

.- Colours
= Como

‘.- Features ~

- hppearance
- Behawviour
- Tranglation

- Data

- Proey

- Telnet

- Rlogin
=-S5H

- Kex

- Host keys
- Cipher
[Auth
LTTY

- X1

- Tunnels
- Bugs

- More bugs

About Help

Options controlling 55H port farwarding

Port forwarding
[] Local ports accept connections from ather hosts
[] Remote ports do the same (55H-2 only)

Forwarded ports: Remove

L5501 chsuml1c1b001:5501

Add new forwarded port:

Source port 5901
Destination |cbsum121001:5901 |
(®) Local () Remote () Dynamic
(®) Auto O IPvd O IPve

Cpen Cancel

VNC: summary

VNC sessions are persistent (similar to screen)

They run even when the client is disconnected

If you need to reset the session you need to use
“Reset VNC” link

Equivalent to Windows Remote Desktop

File transfer

File Transfer: overview

Another Linux or Mac machine
(call it cbsuss04)

&
_ > Y, wget

command

Graphical client
Command line

Web browser
(e.g., Firefox)

(Linux workstation\
e.g., chsuwrkst2

nj;
> Y,

SCP: secure copy
protocol
(SSH-based)

SFTP: secure file
transfer protocol
(SSH-based)

Graphical client
Command line

(" Mac)

4 Windows PC

Graphical client

Command line Graphical client

File transfer: (some) graphical clients

i o e ___iows__

Filezilla recommended
WinScp X

Cyberduck X X

CuteFTP X X

Transmit X

Free FTP X

All clients feature
* File explorer-like graphical interface to files on both the PC and on the Linux machine
e Drag-and-drop functionality

When connecting to a Linux machine from a client, use the sftp protocol (or port 22). You
will be asked for your user name and password (the same you use to log in to the BioHPC
workstations).

Transfer text file in text mode, binary files in binary mode (the default “Auto” should be
right, but...).

Fixing line ending problems

Files transferred to Linux machine from a Windows or Mac machine often have
line endings incompatible with Linux (depends on transfer software used and its

settings)

To fix line endings, use dos2unix command

dos2unix my file mac2unix my file

(the file my £ile will have linux line endings)

dos2unix —-n my file my file converted

mac2unix -n my file my file converted

(the filemy file converted will have linux line endings, the original file
my file will be kept)

FileZilla window

SN NS
File Edit View Transfer Server Bookmarks Help

- [RZHET 3:‘2 4 [33‘& =] QU gl Y

ﬂost:|:| Qsername:I:| Password:| ‘Eor’(:| 22 ‘ Quickconnect | -

Status: Listing directory /home/bukowski/programs ~
Status: Directory listing of “/home/bukowski/programs" successful
Status: Retrieving directory listing of "/home/bukowski/programs/annovar_rev517"...

Status: Listing directory /home/bukowski/programs/annovar_rev517
Status: Directory listing of "/home/bukowski/programs/annovar_rev517" successful o
Local site:| C:\Users\robert\ v |Remote site:| /home/bukowski/programs/annovar_rev517 v
All Users ~ ? abyss-1.3.0 ~
Default ? abyss-1.5.2
- Default User ? abyss-1.5.2_MaybeCorrupt
Default.migrated ? ActiveTcl8.5.10.1.295062-linux-x86_64-threaded
Public ? adapterremoval
2 robert ? adaptml
#- Windows ? annovar_old
[+ Windows.old [+~ annovar_rev517
M D o am A A4 AN v
Filename h Filesize Filetype Last m... ~ |Filename h Filesize Filetype Last.. Per.. Ow.. ~
.cisco File folder 1/21/2.. v example File folder 11/5/... drw... buk..
8 files and 25 directories. Total size: 3,021,280 bytes 6 files and 2 directories. Total size: 379,503 bytes
Server/Local... Di.. Remote file Size Pr... Status

Queued files Failed transfers Successful transfers

i ®¥ Queue: empty oo

File transfer: command-line scp

Linux <-> Linux, Mac <-> Linux

Objective: copy a file /data/reads/my_sequence.fa from the local Linux or Mac machine
to directory /workdir/files on a remote Linux machine called
cbsuwrkst2.biohpc.cornell.edu

While logged in on the local machine, execute:

cd /data/reads

scp my sequence.fa bukowski@cbsuwrkst2.biohpc.cornell.edu:/workdir/files

To copy in the opposite direction:

scp bukowski@cbsuwrkst2.biohpc.cornell.edu:/workdir/files/my sequence.fa

NOTES:
* scpis ageneralization of cp, where the source or the target file is on a remote
machine

* Most cp options work with scp (scp —r will recursively copy whole directory)
* The remote machine must accept connection requests (depends on network config)

File transfer: from the web to Linux

Option 1: use a web browser (such as Firefox)

e Connect to Linux machine in graphical mode (VNC)

» Start Firefox (in terminal window, type firefox, or click on web browser icon)
* Note: the web browser is running on Linux machine, not on your laptop!

* Navigate to desired site and download the file (will ask for directory in which to deposit

the file)

Let’s try to download the following file:

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

File transfer: from the web to Linux

Option 2: run wget command on the workstation (if you know the URL of the file)

* Example 1: simple URL

wget ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM100

(will download the file BLOSUM100 from the NCBI FTP site and deposit it in the current directory under
the name BLOSUM100)

* Example 2: complicated URL

wget -O e_coli_1000_1.fq
“http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?cntrl=646698859&laneid=487&mode=http&file=e_coli_1000_1ifq”

aun

(whole command should be on one line; note the “” marks around the link and the —O option which
specifies the name you want to give the downloaded file)

File transfer: from the web to Linux

Example 3: Downloading lllumina sequencing results

Fragment of a notification e-mail from Cornell Genomics Facility:

Sample: P_Teo_10_b

File: 6581_7527_30809_C877GANXX_P_Teo_10_b_R1.fastq.gz

Size 18570118164 bytes, MD5: 118c0c974a6¢c4dd81895c26cdd4208e6

Link: http://cbsuapps.biohpc.cornell.edu/Sequencing/showsedfile.aspx?mode=http&cntrl=94863491&refid=93804

Sample: P_Teo_11 b

File: 6582_7527_30810_C877GANXX_P_Teo_11_b_R1.fastq.gz

Size 17854406437 bytes, MD5: 20be4a4305b6a2f3260c461536bbf060

Link: http://cbsuapps.biohpc.cornell.edu/Sequencing/showsedfile.aspx?mode=http&cntri=1244420836&refid=93805

e.t.c.

How to get these files onto a Linux machine?

http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=94863491&refid=93804
http://cbsuapps.tc.cornell.edu/Sequencing/showseqfile.aspx?mode=http&cntrl=1244420836&refid=93805

How to get the sequencing files onto a Linux machine?

1. Open Firefox (it’s on a Linux machine, so need to be logged in through
VNC) and navigate to each URL — very tedious if the number of files
large

2. Use wget commands (provided in the notification e-mail as
attachment file. download. sh)

A couple of lines from the attached file download. sh (typically there is more than two
wget commands — may be several hundred!):

wget -q -c -O 6581 7527 30809 C877GANXX P Teo 10 b Rl.fastq.gz
http://cbsuapps.biohpc.cornell.edu/Sequencing/showseqgfile.aspx?mode=http&cntrl=
94863491&refid=93804

wget -q -c -O 6582 7527 30810 _C877GANXX P Teo 11 b Rl.fastq.gz
http://cbsuapps. blohpc cornell. edu/Sequenc1ng/showseqf11e aspx?mode=httpé&cntrl=
1244420836&refid=93805

Transfer this file to your Linux machine and execute it as shell script:

sh ./download.sh

Transferring large numbers of small files

There is a serious time overhead when handling large number of small files
Example: 1 million files 1 Mbyte each

Network bandwidth 150 MBytes/sec = expected transfer time 1.8 hours
actual transfer time: 1-2 days !

Remedy:

Create several tar archives, about 100 GBytes each, each containing a different subset
of original small files, then transfer those tar files, one by one, ‘untar’ at destination

a single big (1 TByte) tar archive would work as well, but more time would be
wasted if transfer is interrupted for any reason and has to be restarted from
the beginning

Running applications

Running applications

O Very much like running system commands

O (Very) general syntax

<path to application_ executable> | <options>

O A few quick examples:

blastall

samtools

tophat

-p blastx -b 1 -d ./databases/swissprot -i seq tst.fa

flagstat alignments.bam

-p 7 -o B L1-1 --transcriptome-index ZmB73 5a WGS \

--no-novel-juncs genome/maize reads Rl.fastq.gz reads:hZTfastq.gz

Running applications

O Why can we call, say, samtools by just typing samtools rather than the full path
(in this case, /programs/bin/samtools/samtools)?

= Because of the search path environment variable which is defined for
everybody. When you type samtools, the system tries each directory on the
search path one by one until it finds the corresponding executable.

"| which samtools|(tells us where on disk the command bwa is located)

"| echo $PATH (displays the search path)

= Note: the current directory ./ is NOT in the search path. If you need to run a
program located, say in your home directory, you need to precede it with ./,
for example, ./my program

= Note: majority of executables are NOT in search path — they need to be
launched using full path.
= Visit https://biohpc.cornell.edu/lab/labsoftware.aspx to find out the path
to your application

https://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Running applications

J How to run Java applications?

O Java programs usually come packaged in so-called jars

O Java program is launched by running the java virtual machine with the appropriate jar
as an argument

O Example:
Launch Java with Run program from
6GB of RAM this jar

1 1

| || !
java -Xmx6g —-jar GenomeAnalysisTK.jar |-T UnifiedGenotyper \

-R genome.fa -i aln.bam -o variants.vcf

Program options

Running applications

1 Need to know what program(s) are relevant for your particular problem

(1 Need to know what a given program does and how to use it

-~

-

= Visit our software page http://biohpc.cornell.edu/lab/labsoftware.aspx

= Links to manuals (all options explained, examples given, test data
available)

= Specific hints on running in BioHPC environment

~

J

O Getting quick help — run command without any options, or sometimes with —h
or -—help

= Should print a list of options with very short descriptions

http://cbsu.tc.cornell.edu/lab/labsoftware.aspx

Example: BLAST

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program

compares nucleotide or protein sequences to sequence databases and calculates
the statistical significance.

Input Executable Output

Set of query sequences
(text file in FASTA format;

we will use 9 human cDNA 4)

sequences) » blas tx Text file listing regions of
* translate DNA into AA - SIrT(;Iljrltybbetween query
« find alighments ar? Iata as’e sequences

Database of known » * compute scores with ‘scores

sequences _ Y,

(multiple binary files;
we will use Swissprot set
of amino acid sequences)

Running applications example: BLAST
prepare input

[Create your local scratch directory (if not yet done) and a sub-directory blast test
where this exercise will be run

(;kdir /workdir/bukowski<\
cd /workdir/bukowski
mkdir blast test

cd blast test

\ — J

O Copy file with query sequences to the exercise directory:

cp /shared data/Linux workshop/seq tst.fa

O Copy Swissprot BLAST database (we’ll make a separate directory for it)

mkdir databases
cp /shared data/Linux workshop/databases/swissprot* ./databases

O Verify that the files have been copied (use 1s command)

Reminder: local vs. network directories in BioHPC Cloud

Jworkdir workdir workdir Local, visible from only

- own workstation

Directly attached — fast access

cbsum1c2b001 cbsuml_c2b002 cbsum1c2b003 workstations

Mk-attached — slow access

g

- Network

directories,
visible from all
workstations

/home /programs /shared_data <+

Files frequently read and/or written (like input and output from an application being
run) must be located on local directories (on BioHPC machines: /workdir)

Running applications example: BLAST
run the program

1 Very general syntax for launching applications:

[<path_to_application_executable> [options] >& log]

[In our specific case (command may be in a single line or split with “\”):

(blastx \ \ executable |
-db ./databases/swissprot \ path to databases files
—num_alignments 1\ alignments to report
-query seq_tst.fa \ query file
-out hits.txt \ output file
\>& run. log / redirect rest of STDOUT+STDERR to file on disk

O For full set of options, run
blastx -help | less

Running applications example: BLAST
running the program

blastx -db ./databases/swissprot \
—-num _alignments 1 -query seq tst.fa -out hits.txt >& run.log

[The program will run for about 1 minute and then write the main
output to the file hits. txt, and he remaining output (STDERR
stream) to run. log

= Often output will appear in hits. txt gradually as a program is
running

O For larger queries, the run will take (much) longer and produce more
output...

= 10,000 similar query sequences run using a similar command would
take about 24 hours

Running a program, cnt.

L Running a program in the background

= Normally, the program will run to completion (or crash), blocking the terminal
window

= By putting an “&” at the end of command, we can send the program to the
background

= Terminal prompt will return immediately — you will be able to continue
working

= Good for long-running programs (most programs of interest...)

= Can run multiple programs simultaneously if more then 1 processor
available on a machine (more about it later)

= |f all screen output redirected to disk, you may log out and leave the
program running (to make sure, use nohup before the command)

blastx [options] >& run.log &

Run in the
background
Lgohup blastx [options] >& run.log &
i\
Keep running Insert options, as previously
after logout

Runnin anprelications
mima

Checking on your application: the top Co
To exit — just type q

g bukowski@cbsum1c1b003: f'workdir/bukowski/blast_test
top - 15:32:54 up 49 days, 19:49, 3 users, load average: 0.81, 0.71, 0.74
Tasks: 306 total, 2 running, 304 sleeping, 0 stopped, 0 zombie
SCpu(s): 12.9 us, 1.7 sy, 0.0 ni, 78.3 id, 6.9 wa, 0.0 hi, 0.3 =i, 0.0 st
KiB Mem : 16264868 total, 2583084 free, 581484 used, 13100300 buff/cache
KiB Swap: 19455996 total, 19454452 free, 1544 used. 14230140 awvail Mem
e
I = SCPU %
26455 bukowski 20 0 238100 41844 36836 3.3 0:06.91 blastx
21297 root 20 0 0 0 0 s 5===2 0.0 235:35.70 socknal sd% <Ta
21715 bukowski 20 0 358256 10208 5168 D 3.3 0.1 138:49.66 tracker-store
21306 root 20 o 0 o 0o s 1.7 0.0 34:11.20 ptlrpcd 00_01
8295 gdm 20 0 727644 21144 3368 s 1.0 0.1 198:53.67 gsd-color
21305 root 20 0 0 0 0 s 1.0 0.0 34:20.35 ptlrpcd 00_00
21345 root 20 o 0 o o= 1.0 0.0 29:06.55 ldlm cb02 001
491 root 20 0 67020 15580 1440 s 0.7 0.1 577:15.01 plymouthd
12338 root 20 o 0 o 0 s 0.7 0.0 29:08.83 1ldlm_ cb02 002
21298 root 20 o o o 0O s 0.7 0.0 35:07.83 scocknal =sd02 01
9 root 20 o 0 0 0o s 0.3 0.0 10:23.57 rcu_ sched
3149 root 39 19]] 0O s 0.3 0.0 9:38.09 kipmi0d
6969 root 20 0 658256 13548 1728 S 0.3 0.1 45:56.34 docker-containe
9526 root 20 0 0 0 0 s 0.3 0.0 6:55.54 1ldlm bl_0S5
10379 root 20 0 0 o o= 0.3 0.0 6:52.34 1ldlm bl 086
10380 root 20 0 0 0 0o s 0.3 0.0 6:53.72 1ldlm_bl_07
21308 root 20 0 0 0 0 s 0.3 0.0 16:32.96 ptlrped 01_01
21310 root 20 o 0 o o= 0.3 0.0 2:57.83 ptlrpcd 02 01
21344 root 20 o 0 o 0 s 0.3 0.0 29:10.35 ldlm_ cb02 000
21349 root 20]]] 0 s 0.3 0.0 6:54.40 1ldlm bl 02
24538 root 20 o 62736 2536 1600 S 0.3 0.0 0:08.29 top
26413 bukowski 20 o 62736 2484 1584 R 0.3 0.0 0:00.38 top
1 root 20 0 1891508 4308 2384 S 0.0 0.0 15:15.40 systemd
2 root 20 o 0 o 0 s 0.0 0.0 0:01.46 kthreadd
3 root 20 0 0 0 0 = 0.0 0.0 0:03.38 ksoftirgd/0
5 root 0 =20 0 0 o= 0.0 o0.0 0:00.00 kworker/0:0H
7 root rt 0 0 0 0 s 0.0 0.0 0:00.35 migration/0
B root 20 o 0 0 0 s 0.0 0.0 0:00.00 rcu_bh
10 root 0 =20 o o 0o s 0.0 0.0 0:00.00 lru-add-drain
1l root rt o 0 0 0o s 0.0 0.0 0:13.16 watchdog/0
12 root rt o 0 o 0o s 0.0 0.0 0:09.99 watchdog/1
13 root rt 0 o 0 0O s o.0 0.0 0:00.20 migratien/1
14 root 20 0 0 0 0 s 0.0 0.0 0:02.25 ksoftirgd/1
16 root 0 =20 0 o 0o s 0.0 ©0.0 0:00.00 kworker/1l:0H

Running applications, cnt.

Checking on your application:

the ps command — display info about all your processes — one of them should be
blastall

PsS

-ef

| grep bukowski

root 4735
root 4737
bukowski 4738
bukowski 4740
bukowskl 4741
bukowskli 4756
bukowski B418
bukowski 8419
bukowski B423
bukowski 8428
rint-address 3
bukowski 8430
bukowski 8433
bukowski B4B1
bukowski 21715
root 26312
bukowski 26322
bukowski 26323
bukowski 26521
bukowski 26531
bukowski

28532

1

4873
4873
4735
4737
4740
4738

1

1

1
8423

oo oo o oo 00O

o

1
4873
26312
26322
4756
26323
26323

w
o0 W o o oo o0
i

Sepiﬁ
Seplé6
Sep2é6
Sep26
Sep2é
Sep26
Sepl6
Sepi6
Seplé
Sep26

Sep26
Sep26
Sep26
Sep25
15:30
15:30
15:30
15:34
15:35

15:35

Process ID (PID)

?
2
7
7

pts/0
pts/0
?
?
?

(L BECS I s]

2

pte/2
pts/0
pts/2
pts/2

E;,' bukowski@ cbsum1c1b003: /'workdir/bukowski/blast_test

[bukowskifcbsumlclb003 blast test]$ ps -ef
00:
00;
00;
00:
00:
00:
00
00:
00:
00:

00:
00:
00:

02

00:
00:
00:
00:
00:
00:

00:
00
00;
00:
00:
00:
00
00:
00:
00:

00:
00:
00:
:18
00:
00:
00:
00:
00:
00:

1

grep bukowski

oo
oo
03
00
00
00
]
]
oo
oo

oo
oo
oo

154

00
00
00
0

0o
0o

sshd:
sshd:

bukowski [priv]

bukowski [priv]

sshd: bukowskigpts/0

sshd: bukowskifnotty

fusr/libexec/cpenssh/sftp-server

-bash

dbus-launch --autelaunch £9460e8521444e7684129%352518641e3 --binary-sy
Jusr/bin/dbus-daemon --fork --print-pid 5 --print-address 7 --sessier
/usr/libexec/at-spi-bus-launcher

Jusr/bin/dbus-daemon --config-file=/usr/share/defaults/at-spi2/access

Jusr/libexec/at-spiZ-registryd --use-gnome-session
fusr/libexec/gconfd-2

fusr/libexec/dconf-service
fusr/libexec/tracker-store

sshd: bukowski [priv]
sshd: bukowski@pts/2
-bash

lastx -db ./databases/swissprot —%EEEE:)eq_tst,fa -num_alignments 1
Ps -€l
grep --color=auto

bukowski

Running time

Tryman ps for more info about the ps command.

Running applications

O Stopping applications

* |f the application is running in the foreground (i.e., without “&”), it
can be stopped with Ctrl-C (press and hold the Ctrl key, then press
the “C” key) issued from the window (terminal) it is running in.

e |f the application is running in the background (i.e., with “&"), it
can be stopped with the kill command

[kill -9 <PID>]

Where <PID> is the process id obtained rom the ps command. For
example, to terminate the blastall process form the previous
slide, we would use

[kill -9 18817]

Tryman kill for more info about the kill command.

Keeping a program running in the background after you log out or
disconnect

Option 1: Use nohup (as on previous slide). Of course, you can use
this also with options 2 and 3.

Option 2: Start a program in a terminal within a VNC session

* the session keeps running after VNC connection is killed
e you can reconnect to VNC session later

Option 3: Start a program within a screen window

 all such windows keep running after you disconnect using
“Ctrl-a d” or by killing terminal window
e you can reconnect to screen session later

Shell scripting

Example we already talked about: Downloading lllumina sequencing results

Script download. shis sent as attachment to notification e-mail from the sequencing

facility

@ [screen 2: bash] bukowski@chsudesktop0S:Anork dinfbukoweskiftstlfsnp_exarmple | = || = ||

#'!'/bin/hash

Collect all the wget comnands from notification e-mwails

(make sure there are no blank spaces after "\ ")

wget -c -g -0 783_3 35944 N PhiX Rl.fastg.gz

http://chanappa.to.cornell. edu/Sequencing/ showseqfile.

wget -c -g -0 783_3 35944 N PhiX RZ.fastg.gz

http://chsuapps.to.cornell. edu/3equencing/ showseqfile.

wget -c -g -0 733 3 35944 N Sample Rl.fastg.gs

http://chsuapps.to.cornell. edu/3equencing/ showseqfile.

wget -c -g -0 733 3 35944 N Sample Ri.fastg.gs

http://chsuapps.to.cornell. eduf3equencing showsegqfile.

—

aspxmode=httpicntrl=1253456754refid=5696

aspxmode=httpLcntrl=123476298refid=5697

aspx?mode=httpLcntrl=767556788refid=50695

aspxmode=httpLontrl=19586878srefid=5699

Copy download. sh to your Linux machine and run as a script

sh ./download.sh

m

Script for a complex task: SNP-calling

Example: given lllumina reads (in FASTQ format) and reference genome (FASTA), call SNPs

| genome.fa ﬁq |

I}

Index genome
(bwa)

Reference BWA |
index files

L__l____l

Align reads to

reference
(bwa)
| Alignment I
| (aln.sam) I

Convert to
\ BAM format
(samtools)

aln_srt.bam.bai

.___f___l

Index BAM file
(samtools)

-t __

I Sorted l
I alignments I
I (aIn srt.bam) |

Sort
alignments
(samtools)

|AI|gnment
| (aln.bam) I

Get genotype lkhds
(samtools,bcftools)

I Raw genotyping |
I result |
I (var.raw.vcf)

S L

SNP filtering
(bcftools)

Final SNPs
(var.flt.vcf)

Scripts: tools for executing complex tasks

dSequence of steps on previous slide is an example of a pipeline

= Each step corresponds to (typically) one instance of a program
or command

" |nput files used in a step are (typically) generated in preceding
steps

= Some steps may run quite long (depends on amount of input
data and size of reference)

= Executing each step in a terminal as a command is possible,
but tedious and hard to repeat (for example, with a new input

data)

= Remedy: write a shell script — a text file with commands

Shell script: a set of commands (and comments)

(% pipelinesh (flocal/workdir/bukowski/tstl/snp_example) - gedit (on chsudesktop05.te.cornell.edu) = || = &=

File Edit Wiew 5Search Tools

=

New Open

Documents Help

B #A A

Paste | Find Replace

=
Print

Al
Save

b

<| pipeline.sh 3 |
#!/bin/bash

This is a simple example of a SNP-calling pipeline

The first line 1is the headet which tells Linux which shell to use
when running this script

Anything after "#' 1s a comment (except in first line)

We start creating the directory for BWA index and placing the
reference genome there

mkdir bwaindex
mv genome. fa bwaindex

Now we index the genome, so that output is in the new directory

cd bwaindex
bwa index -a is -p drosophila genome. fa

4= 5

The whole functional script, @

available in tarball
/shared data/Linux workshop/pi

Align the reads

cd ../
bwa mem bwaindex/drosophila reads.fastg 1= aln.sam

Convert alignment output to binary format
samtools wview -bS aln.sam 1= aln.bam

Sort alignments over genomic coordinate and index the sorted file

samtools sort aln.bam aln_str

samtools index aln_str.bam

sh v Tab Width: 8 ~

Ln1, Coll

INS

A

in a text file

This is a fragment of
an actual script
implementing the
SNP-calling pipeline.

ong with input files is

peline_ example. tgz

Shell scripts

Q First line should be #!/bin/bash (indicates the shell used to interpret the script)
= |f absent, default shell will be used (bash)

O Everything in a line following “#” is a comment

O May include system commands (like cp, mv, mkdir, ...) and commands launching
programs (plastall, bwa, samtools,..)

0 Commands will be executed “in the order of appearance”

O Long lines can be broken with “\” character
= The “\” character must be the last one in a line (no blank spaces after it)

[Script (e.g., my script. sh, in the current directory) can be run as in the following:

bash ./my script.sh >& my script.log &
./my script.sh >& my script.log &

 The second command will work if the file my script. shis made executable with
the command

[chmod u+x my script.sh]

Shell scripts: conditionals and loops

#!/bin/bash
Example of a conditional statement

if [-e file* txt]
then

echo File file.xt exists
else

i

echo File file. txt does not exist

#!/bin/bash
Example of a loop

For each file with name ending with . txt"
count the files and compress the file

for 1 in #*, txt
do
we ${i}
gzip ${i}
done

Another loop example:
Create 10 directories called dirl, dir2, ..., dirl@
#

for 1 in {1..10}
do

mkdir dir${i}
done

More about scripting

Multiple scripting tools available

shell (bash, tcsh —good for stitching together shell commands)

perl (very popularin biology, due to BioPerl module package)

python (good numerical analysis tools — NumPy, SciPy packages)

awk (mostly text parsing and processing)

« sed (mostly text parsing and processing)

R (rich library of numerical analysis and statistical functions)

Using multiple processors

Recommended reading:

Efficient use of CPUs/cores on BioHPC Cloud machines
http://biohpc.cornell.edu/lab/doc/using BioHPC CPUs.pdf

http://biohpc.cornell.edu/lab/doc/using_BioHPC_CPUs.pdf

Multiple processors

Using BLAST to search swissprot database for matches of 10,000 randomly chosen
human cDNA sequences (swissprot is a good example of a small memory footprint).

CPU
availa cores cores time speedup
machine ble | available used (hrs) | (in machine)
cbsulm10 4 64 64 0.931 27.506
cbsulm10 4 64 16 1.962 13.056
cbsulm10 4 64 1 25.619 1.000
cbsumm15 2 24 24 2.058 12.117
cbsumm15 2 24 12 2.593 9.616
cbsumm15 2 24 1 24.930 1.000
cbsum1c2b008 2 8 8 4.193 6.717
cbsum1c2b008 2 8 1 28.161 1.000

Using BLAST to search nr database for matches of 2,000 randomly chosen human cDNA
sequences (nr is a good example of a large memory footprint).

CPU cores cores time speedup
machine available | available used (hrs) (in machine)
cbsulm10 4 64 64 10.97 2.222
cbsulm10 4 64 16 24.37 1.000
cbsumm15 2 24 24 26.10 2.140
cbsumm15 2 24 12 55.85 1.000

Multiple processors

O It is VERY important to use multiple cores. BLAST on 64 cores takes only 0.931
hours (2K cDNA vs swissprot), the same run on a single core takes over 25 hours!

O Speedup is not directly proportional to the number of cores. Most often it is less
than expected, but still sufficiently large to justify the effort. 64 cores compared
to 1 core in swissprot example give 27.5 speedup rate, much less than 64-fold,
but still large!

O Speedup depends on the machine (hardware), program (algorithm), and
parameters (e.g., nr vs swissport). When using nr database on cbsumm15 the
speedup between 12 and 24 cores is 2.14. For swissprot on the same machine it
is only 1.26.

= |tis often a good idea to run a short example first (if possible) on a subset of
data to figure out the optimal number of cores.

Multiple processors

Three ways to utilize multiple CPU cores on a machine:
d Using a given program’s built-in parallelization

d Simultaneously executing several programs in the
background

J Using a “driver” program to execute multiple tasks
in parallel

Multiple processors

d Take advantage of a program’s built-in parallelism invoked with an option
= read documentation to find out if your program has this feature

= Look for keywords like “multithreading”, “parallel execution”, “multiple
processors”, etc.

A few examples:

{lastall —a 8 [other options] \

blastx -num threads 8 [other options]

tophat -p 8 [other options]
Remember speedup is not

perfect, so optimal number of
threads needs to be optimized

by trial and error using subset of
bwa -t 8 [other options] input data

cuffdiff -p 8 [other options]

@wtie -p 8 [other options] /

Multiple processors

blastx —num threads 2 -db ./databases/swissprot -query seq tst.fa

fbuknwski@chsum1c1I::IDD3:_a'wu:|rku:|ir_a'l::luku:uwski_r'l:lIast_tes.t — O > |
top - 15:42:34 up 49 days, 19:59, 3 users, load average: 0.87, 0.77, 0.78 ~
Tasks: 306 total, 1 running, 305 sleeping, 0 stopped, 0 zombie
%Cpu(s): 25.0 us, 2.0 sy, 0.0 ni, 64.5 id, 6.6 wa, 0.0 hi, 1.9 si, 0.0 st
KiBE Mem : 16264868 total, 2582488 free, 582616 used, 13099764 buff/cache
KiB Swap: 19455986 total, 19454452 free, 1544 used. 14229552 avail Mem
PID USER 5 /%C %
26831 bukowski 20 0 451108 47712 40184 s 0_3 0:08.00 blastx
21297 root 20 0 0 0 0 s -8 0.0 236:10.04 socknal sd02 00
21715 bukowski 20 0 356256 10400 5360 D 3.7 0.1 139%:10.07 tracker-store
21305 root 20 0 0 0 0 s 2.0 0.0 34:26.34 ptlrped 00_00
491 root 20 0 67020 15580 1440 5 1.0 0.1 577:19.78 plymouthd
12338 root 20 0 0 0 035 1.0 0.0 29:12.95 ldlm cb02 002
B295 gdm 20 0 727644 21144 3368 5 0.7 0.1 198:58.38 gsd-color
21298 root 20 0 0 0 0 s 0.7 0.0 35:12.57 socknal sd02 01
21306 reoot 20 0 0 0 0 s 0.7 0.0 34:16.9%5 ptlrped 00 01
21344 root 20 0 0 0 05 0.7 0.0 29:14.1% 1ldlm cb02_000
21345 root 20 0 0 0 0 s 0.7 0.0 29:10.91 ldlm cb02 001
9 root 20 0 0 0 08 0.3 0.0 10:24.98 rcu sched
4291 root 20 0 90500 2976 2120 s 0.3 0.0 10:32.26 rngd
6292 root 20 0 0 0 035 0.3 0.0 6:55.95 1ldlm bl 04

d >100% CPU indicates the program is multithreaded
= Multiple threads within a single process rather than multiple processes

Multiple processors

1 Simultaneously executing several programs in the background

Example: suppose we have to compress (gzip) several files. We can simply
launch multiple gzip commands in the background, without waiting for

previous ones to finish:
4)
gzip filel &
gzip file2 &
gzip file3 & Multiple processes
J (1 thread in each)

@ [screen 1: bash] bukowski@cbsudesktopd5: -~ =Rac

Task=s: 5%3 total, 4 running, 588 sleeping, 0 stopped, 0 zombie

Cpui(=): 17.8%us, O0.1%=sy, 0.0%ni, 82.0%id, 0.0%wa, ©0.0%hi, 0.0%=i, 0.0%=t
Mem: 49414048k total, 49026380k used, 387668k free, 105696k buffers

Swap: 51642360k total, 284k used, 51642076k free, 45229964k cached

HR 5 3CPU IMEM TIME+ COMMAND

30204 bukowski 20 0 4356 6%6 320 H 100.0 0.0 0:04.04 g=ip
30205 bukowski 20 0 4356 652 320 [100.0 0.0 0:04.04 g=ip
30206 bukowski 20 0 4356 696 320 R 99.3 0.0 0:04.03 g=ip

T3 root 20 0 0 0 0S5 0.7 0.0 0:04.56 events/6
2617 root 20 0 3%0m Tim 2804 5 0.7 0.1 10:04.51 glusterfs
25934 bukowski 20 0 118m 1152 936 5 0.7 0.0 0:00.06 =creen
= e B T e s T] b lal (2] 1A CC LS aTan ANt ™ Lo T [T a1 A Nals caAa ————

Multiple processors

What if in the previous example, we had, say, 3000 files instead of just 3, but still only a
few processors?

Submitting all 3000 commands simultaneously in the background (in principle, it could be
done painlessly using a script) would not work too well, because:

O Each processor would have to switch between many processes — possible, but inefficient

O With large number (and/or size) of files being processed, access to disk would become a
bottleneck (i.e., processes would spend most of their time competing for access to disk)

O Disk access (referred to as I/O — input/output) is always an issue for programs
which do a lot of reading/writing (like gzip)

O As a result, we would get no speedup, or (more likely) processing of all files in parallel
would take longer than processing them one by one

In situations like this (many short tasks and a few processors), we
need a special “driver” tool to efficiently distribute the tasks.

Multiple processors

d Using a “driver” program to execute multiple tasks in parallel

Example: create a file called (for example) TaskFile
(This is NOT a script, although it could be executed as such...)

IE’ TaskFile (flocal/workdir/bukowski/tstl) - gedit (

Fle Edit View Search Tools

New

=

Open

W

l

TaskFile éil

gzip
gzip
gzip
gzip
gzip
gzip
gzip
gzip
gzip
gzip

..... (upto £11e3000)

filel
file2
file3
file4
files
file6
file7
file8
file9
filel®

Vs

=y
Save

=
Print

Docut

Undo

This long file can be created, for example,

using the following shell script:

@’ rake_taskfile.sh (/local/workdir/bukowski/tstl) - ged... | =

2.8 &

- W
New |Open Save Print | Undo

TaskFile 3¢ Ic make_taskfile.sh .ﬂ.l
#! /bin/bash

rm -f TaskFile
for 1 in {1..3000%
do
echo gzip filef{i} =>> TaskFile
done

sh ~ Tab Width: 8 v Ln 3, Col 15

=] &

File Edit View Search Tools Documents Help

INS

Multiple processors

Then run the command (assuming the TaskFile and all £ile* files are in the current dir)

/programs/bin/perlscripts/perl fork univ.pl TaskFile NP >& log &

where NP is the number of processors to use (e.g., 10)

O perl fork univ.plisan CBSU in-house “driver” script (written in perl)

O It will execute tasks listed in TaskFile using up to NP processors
= The first NP tasks will be launched simultaneously
= The (NP+1) th task will be launched right after one of the initial ones completes
and a “slot” becomes available

= The (NP+2) nd task will be launched right after another slot becomes available
= etc., until all tasks are distributed

O Only up to NP tasks are running at a time (less at the end)

O All NP processors always kept busy (except near the end of task list) — Load Balancing

Mixed parallelization: running several simultaneous multi-threaded tasks (each
processing different data) on a large machine (here: 64-core)

tophat -p 7 -o B _Ll1-1 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

-—-no-novel-juncs genome/maize \

fastq/2284 6063 7073 C3AR7ACXX B L1-1 ATCACG Rl.fastqg.gz \

fastq/2284 6063 7073 C3ARTACXX B L1-1 ATCACG R2.fastg.gz >& B Ll-1.log &
tophat -p 7 -o B _L1-2 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

--no-novel-juncs genome/maize \

fastq/2284 6063 7076 C3ARTACXX B L1-2 TGACCA Rl.fastqg.gz \

fastq/2284 6063 7076 C3ARTACXX B L1-2 TGACCA R2.fastg.gz >& B L1-2.log &
tophat -p 7 -o B _L1-3 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

-—-no-novel-juncs genome/maize \

fastq/2284 6063 7079 C3ARTACXX B L1-3 CAGATC Rl.fastg.gz \

fastq/2284 6063 7079 C3ARTACXX B L1-3 CAGATC R2.fastq.gz >& B L1-3.log &
tophat -p 7 -o L Ll-1 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

-—-no-novel-juncs genome/maize \

fastq/2284 6063 7074 C3ARTACXX L L1-1 CGATGT Rl.fastqg.gz \

fastq/2284 6063 7074 C3ARTACXX L L1-1 CGATGT R2.fastq.gz >& L Ll-1.log &
tophat -p 7 -o L L1-2 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

-—-no-novel-juncs genome/maize \

fastq/2284 6063 7077 C3ARTACXX L L1-2 ACAGTG Rl.fastqg.gz \

fastq/2284 6063 7077 C3ARTACXX L L1-2 ACAGTG R2.fastq.gz >& L L1-2.log &
tophat -p 7 -o L L1-3 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

--no-novel-juncs genome/maize \

fastq/2284 6063 7080 C3AR7ACXX L L1-3 ACTTGA R1.fastqg.gz \

fastq/2284 6063 7080 C3AR7TACXX L L1-3 ACTTGA R2.fastqg.gz >& L L1-3.log &
tophat -p 7 -o S _Ll1-1 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

-—-no-novel-juncs genome/maize \

fastq/2284 6063 7075 C3ARTACXX S L1-1 TTAGGC Rl.fastg.gz \

fastq/2284 6063 7075 C3ARTACXX S _L1-1 TTAGGC R2.fastg.gz >& S _Ll-1.log &
tophat -p 7 -o S _L1-2 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

--no-novel-juncs genome/maize \

fastq/2284 6063 7078 C3AR7TACXX S L1-2 GCCAAT Rl.fastg.gz \

fastq/2284 6063 7078 C3ARTACXX S _L1-2 GCCAAT R2.fastg.gz >& S _L1-2.log &
tophat -p 7 -o S _L1-3 --transcriptome-index genome/transcriptome/ZmB73 5a WGS \

--no-novel-juncs genome/maize \

fastq/2284 6063 7081 C3AR7ACXX S L1-3 GATCAG Rl.fastg.gz \

fastq/2284 6063 7081 C3AR7TACXX S L1-3 GATCAG R2.fastg.gz >& S_L1-3.log &

Multiple processors

General guidelines

L Do not run more processes/threads than CPU cores available on the machine
= For large number of tasks, use script perl fork univ.pl

O Run only as many simultaneous processes as will fit in memory (RAM)
= when in doubt, run a single process first and check its memory requirement (for

example, using top)

O Programs heavy on 1I/O will compete for disk access if run in parallel — running too
many simultaneously is not a good idea

QO If available, use program’s own multithreading options

O Using subset of input data, try to determine number of CPU cores which (for a given
machine, input, and program options) gives the optimal speedup.

Old/Extras

Linux
directory
tree

Branches =

directories
|

leaves, nuts
= files

4o

Direct squirrel to nutl (on the right) using commands:

/)

N

some name/

or
/)

get on the main trunk (referred to as root)
from where you are, turn into branch “some name”
return to the previous branch (closer to root)

stay where you are

Using these, direction from the ground to nutl will be:

/home/him/shack/nutl

This is called absolute path (starting from the trunk)

current directiory

Assume squirrel sitting on home rather than on the ground. We could make
him jump to the ground and use the absolute path. Instead, we can simplify:

him/shack/nutl

This is called relative path (starting from where “we are”)

current directiory

Assume squirrel sitting on R‘ack. We could make him jump to the ground and

use the absolute path. Instead, we can simplify:

nutl or ./nutl

This is called relative path (starting from where “we are”)

current directiory

N

Assume squirrel sitting on CDs. We could make him jump to the ground and use the absolute
path. Instead, we can simplify:

../../home/him/shack/nutl

Another example of relative path. Could also use, for example,

../../insects/bees/../wasps/../../home/me/../him/shack/nutl

Sounds unnecessarily long, but sometimes useful

Example of directory tree (more real)

Referring to files:

= Full path:
/home/bukowski/tst5/transcripts.gtf

GATK_tst/ Relative path (i.e., relative to
/home/bukowski)
ecoli_tst/ tst5/transcripts.gtf

e H E
~ <~

< c
SRS
S~ S~
S~

bin/
dev/ - Relative path (i.e., relative to
igv.log
etc/ /home/bukowski/tst5)
perl_test.txt t ipt tf
genes_exp! ranscripts.g
programs/
o
media/ test_tophat.bam
opt/ test_tophat.sam
programs/ transcripts.expr
shared_data transcripts.gtf
tmp/
tst_blat/
tophat/

ecoli_genome.fa

tw337/

Cornell-Ithaca NetID simplifies work — get it if you can!

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid

Excerpt:

Weill Cornell Medical College faculty and staff can be issued a
NetID if they need access to online services offered on the Ithaca
campus. A NetID may be requested by contacting the IT Service
Desk.

Students at Weill Cornell Medical College are not eligible for
Cornell NetlDs.

https://it.cornell.edu/cuweblogin-netids-policy/who-eligible-netid
https://it.cornell.edu/support

Logging in via ssh from Windows PC

* |nstall remote access software (PuTTy). For details, consult
http://biohpc.cornell.edu/lab/doc/Remote access.pdf

= Use PuTTy to open a terminal window on the reserved workstation
using ssh protocol

= When connecting for the first time, a window will pop out about “caching server
hostkey” — answer “Yes”. The window will not appear next time around

= while you are typing your password, the terminal will appear frozen — this is on
purpose!

= Adjust colors, if desired (before or after connecting)
= configure X11 forwarding (if you intend to run graphical software)
= Save the configuration under an informative name

= You may open several terminal windows, if needed (in PuTTy — can use
“Duplicate Session” function).

http://biohpc.cornell.edu/lab/doc/Remote_access.pdf

Working with text files

Viewing text files

less README. txt

(display the content of the file README.txt in the current directory dividing the file into
pages; press SPACE bar to go to the next page or use up/down arrows)

head -100 my reads.fastqg plpe

(display first 100 lines of the file my_reads.fastq in the current directory) Output from first

command is “piped”

tail -100 my reads.fastq_‘

as input to the
second

(display last 100 lines of the file my reads.fastq in the current directory)

tail -1000 my reads.fastq | less l

(extract the last 1000 lines of the file my _reads.fast display them page by page)

head -1000 my reads.fastq |®"tail -100

(display lines 901 through 1000 of the file my _reads.fastqg). Note the “|” character: it pipes
the output from one command as input to another

cat my reads.fastqg cat my reads.fastg >> reads all

(print the file on screen) (append a file to the end of another)

wc my reads.fastq

(display the number of lines, words, and characters in a file)

Working with text files

Looking for a string in a text file:

grep “Error: lane” calc.log
(display all Tines of the file calc.log in the current directory which contain the

string “Error: lane”)

Looking for a string in a group of text files:

grep “Error: lane” *.out
(display all files * .out in the current directory which contain the string “Error:
lane”; also display the lines containing that string)

Looking for lines which do not contain a string (ighore case)

grep -i -v “some STring” my file

Look for lines containing “AAA” surrounded by TABs
l grep -P “\tAAA\t” my file

cut/paste
examples

cut -f 1,3 Filel

a C

g i
d £
j 1l

paste Filel File2

Filel

U Qe
~ 0 50

H H P

U 0Q e
~ 0 50

H H HQ

File2 TAB-delimited files

O b dJdKr
R Ol N
N ooV W

cut —f 1 --complement Filel

H H FQ

2

oo n

means that the second file

is to be read from STDIN

1
,
4
0 (passed on through pipe “|”)

8
5
10 11

cut -f 1,3 Filel | paste File2 -

1

1
7
4
0

2

1

8
5
1

H H HQ \\\:jcnto(»
A~ 0D DD

N oYy O W
U 0Q o

1

sort command

Let File contain a TAB- or space-delimited table

sort File

(sort File alphabetically over whole rows)

sort -k 2,2 -k 3,3n -k 5,5nr File > new File

)

(sort File alphabetically over column 2, then numerically from small to large over
column 3, and then numerically from large to small over column 5; write result to
file new _File)

sort —-u File

(sort File keeping only unique rows)

Seelman sortl forlot’s more information

Working with text files

Files transferred to Linux machine from a Windows or Mac machine often have
line endings incompatible with Linux (depends on transfer software used and its

settings)

To fix line endings, use dos2unix command

dos2unix my file mac2unix my file

(the file my £ile will have linux line endings)

dos2unix —-n my file my file converted

mac2unix -n my file my file converted

(the filemy file converted will have linux line endings, the original file
my file will be kept)

VNC: starting VNC server

Please do NOT do it this way on BioHPC
workstations! See next slide for server starting
procedure on BioHPC Lab!

Log in to the machine via ssh client (e.g., PuTTy), then in the terminal window
type:

vncserver

You will be asked to set up a password for your VNC session (it is separate from
your password on the machine). Once this is done, the VNC server will start
running. It will print out the port number (a small integer, typically 1, 2, ...) to use
while connecting from the client.

On BioHPC Lab machines, the VNC server is started through
our website.

Running applications example: BLAST

4 Input:

= FASTA file with query sequences
= We will use 9 random human cDNA sequences

= Database of known sequences with which the query is to be
compared
= We will use Swissprot set of amino acid sequences
= Need to translate each cDNA query in 6 frames and align to
Swissprot templates

O Output
= Text file describing hits

O Program to run: blastx
Part of the blast+ suite of programs

