
Parallel Processing and
Load Balancing

Robert Bukowski
Institute of Biotechnology

Bioinformatics Facility
(aka Computational Biology Service Unit - CBSU)

Contact: brc_bioinformatics@cornell.edu

Workshop website: https://biohpc.cornell.edu/ww/1/Default.aspx?wid=136

mailto:brc_bioinformatics@cornell.edu
https://biohpc.cornell.edu/ww/1/Default.aspx?wid=136

 Can you solve a ‘big task’ on your laptop? Not really…

 too small: not enough memory, not enough disk to store big data
 too slow: analysis would take forever

 You need a more powerful resource

 bigger: more memory, more disk
 FASTER!!!

 What does FASTER mean?

 faster processor (and other hardware) – yes, but first of all….
 MORE processors !!!
 knowledge how to use it all

Motivation

BioHPC renatal resources

Server type #servers #cores RAM [GB]
interactive 4 4 24

general 32 8 16
medium gen1 1 16 64

16 24 128
medium gen2 12 40 256

large gen1 8 64 512
large gen2 2 96 512

4 112 512
2 80 512
3 88 512

extra-large 1 64 1,024
1 112 1,024

1 88 1,024
GPU gen2 2 32 256
Total 89 3,056 19,104

your workshop machines

Big picture

Given:

 ‘big task’ at hand

 multiple CPUs, RAM, and disk storage, possibly
scattered across multiple networked computers

Objective:

 Parallelize: solve the ‘big task’ in time shorter than it
would take using a single CPU on a single computer

 Balance load: keep resources busy, but not overloaded

network

Synopsis
 Some basic hardware facts

 Some basic software facts

 Parallelization: problems and tools

 Monitoring and timing Linux processes

 Multiple independent tasks

 Load balancing

Next week:
 Advanced load balancing using job scheduler (SLURM = Simple Linux Utility for Resource Management)

Hands-on exercises: will introduce some tools and techniques (although quantitative conclusions doubtful in
shared environment…)

CPU: an integrated circuit (a “chip”) containing computational hardware. May be more than one per server, typically 2-4.

Core: a subunit of CPU capable of executing an independent sequence of instructions (a thread). Shares communication infrastructure and
internal memory with other cores on the CPU.

threads possible to run at the same time = # cores

Hyperthreading (HT): technology to simultaneously run several (typically – two) independent sequences of instructions (threads) on each
core, sharing the core’s hardware; may be disabled or enabled.

If HT enabled, core is understood as hyperthreaded core
In this example, with HT enabled, # cores =24

RAM: memory. All accessible to all cores (but easier to access CPU’s ‘own’ portion); Cache: fast-access (but small) memory ‘close’ to CPU

CPU 1 (in ‘slot’ or ‘socket’)

core

core

core core

core

core core

core

core core

core

core

RAM
64GB

RAM
64GB

Resources on a single machine (here: cbsumm12)
Motherboard

Cache
15MB

Cache
15MB

Local disk storage

Network disk storage

/workdir

/home
slow

fast

CPU 2 (in ‘slot’ or ‘socket’)

[root@cbsumm12 ~]# lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 24

On-line CPU(s) list: 0-23

Thread(s) per core: 2

Core(s) per socket: 6

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel

CPU family: 6

Model: 45

Model name: Intel(R) Xeon(R) CPU E5-2620 0 @ 2.00GHz

Stepping: 7

CPU MHz: 2500.122

CPU max MHz: 2500.0000

CPU min MHz: 1200.0000

BogoMIPS: 4000.35

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 15360K

NUMA node0 CPU(s): 0-5,12-17

NUMA node1 CPU(s): 6-11,18-23

Flags: fpu vme de pse tsc …

Check on CPU configuration with lscpu

Hyper-threaded cores

Hyperthreading ON

CPUs

Check memory using free

[bukowski@cbsumm12 ~]$ free -m

total used free shared buff/cache available

Mem: 128738 1772 123220 1550 3746 124575

Swap: 4095 836 3259

show in Mbytes
(other options: -k -g)

Not always correct,
unfortunately…

Check disk storage using df

[root@cbsumm12 ~]# df -h

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/rhel_cbsumm12-root 300G 32G 269G 11% /

devtmpfs 63G 0 63G 0% /dev

tmpfs 63G 0 63G 0% /dev/shm

tmpfs 63G 2.1G 61G 4% /run

tmpfs 63G 0 63G 0%

/sys/fs/cgroup

/dev/md126 871G 72M 827G 1% /SSD

/dev/mapper/rhel_cbsumm12-home 3.4T 130G 3.3T 4% /local

/dev/sda2 494M 144M 351M 30% /boot

tmpfs 13G 16K 13G 1% /run/user/42

tmpfs 13G 0 13G 0% /run/user/0

128.84.180.177@tcp1:128.84.180.176@tcp1:/lustre1 1.3P 1003T 300T 78% /home

cbsugfs1:/home 233T 135T 99T 58%

/glusterfs/home

tmpfs 13G 0 13G 0%

/run/user/4857

Local scratch space (fast, temporary)
Network-mounted (slow, permanent).
NO I/O-intensive computations there!

Check other hardware using lspci

PCI = Peripheral Component Interconnect

Most devices are attached this way

[root@cbsumm12 ~]# lspci | grep -i raid

00:1f.2 RAID bus controller: Intel Corporation C600/X79 series chipset SATA RAID

Controller (rev 06)

[cryosparc_user@cbsugpu03 ~]$ lspci | grep -i nvidia

02:00.0 3D controller: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB] (rev a1)

83:00.0 3D controller: NVIDIA Corporation GP100GL [Tesla P100 PCIe 16GB] (rev a1)

lspci produces long output, better paginate or filter, e.g.,

What’s running on a machine

thread
text, data

thread 2
text, data

thread 1

thread 4
text, data

thread 3
thread 2
thread 1

Process 1

Process 2

Process 3

 Everything ‘running on a machine’ (apps run by users, OS tasks)
does this by means of processes

 Process: instruction sequence loaded into memory, to be
executed by CPU cores, using some memory to store code (text)
and data, communicating with peripherals (disk storage,
network, …)

 Templates for processes stored on disk as executable files

 Process may contain one or more threads (multithreading), all
with access to the same data (but not to data of other
processes)

 Each process has a unique process ID (and so do individual
threads)

 Each process is created by another process - its parent process
(thus, there is a process tree)

 Each process (with all its threads) runs on a single machine

Cores and processes: mixing it all together

 At any given time, a core can be
 executing one thread
 idle

 At any given time, a thread can be
 running on one of the cores
 waiting off-core (for input or data from memory or disk, or for an available core)
 stopped on purpose

 Load: number of threads running + waiting for a core to run on (should not exceed number of cores!)

 Context switches
 a core executes one thread for a while, then switches to another (state of the previous one is saved to be

resumed later)
 some threads have higher priority (like quick house-keeping tasks by OS)
 threads are only allowed to run for some time without being switched out
 frequent context switches not good for performance (occur at high load)

 Scheduler (part of Linux kernel) takes care of distributing threads over cores
 (not to be confused with SLURM job scheduler discussed in Part 2)

Hardware: CPUs, memory, disk storage, other peripherals

Linux kernel
system call interface (SCI) – used by processes
process scheduling
inter-process communication tools (IPC)
memory management
interface to hardware (drivers)

C standard library (processes communicating with kernel)

Processes

Low-level system components (init, services, logind, networkd, X11,…)

User applications (bash, python, bwa, FireFox, ssh, VNC, blast+…)

Kernel mode

User mode

Software structure

Cores and processes: mixing it all together
 Typically, there are many more threads than cores:

Example: empty (i.e., no users) machine cbsumm12 (24 cores), some time last Saturday:

ps -ef | wc -l : 596 (all processes)
ps –efL | wc –l : 919 (all threads)

these are processes that keep the OS running
mostly waiting for stuff to help with, clean up, running only when needed
consume very few CPU cycles and little RAM

 Despite large number of threads, the load on the machine was very low, and most memory was available:

uptime

10:37:32 up 265 days, 14:57, 3 users, load average: 0.08, 0.21, 1.11

free -m

total used free shared buff/cache available

Mem: 128738 1772 123220 1550 3746 124575

Almost all CPU and memory resources up for grabs by users’ programs

Big picture

 Given a ‘big task’ at hand, make multiple CPU cores
work in parallel to achieve the solution in time shorter
than what would be needed if only a single core were
used

 Constraints:

 CPUs and memory possibly scattered over multiple
networked machines

 Core number and memory limits on individual machines

 A process (with all its threads and memory) can only run
on one machine

 No direct data sharing between processes

network

Parallelize the problem!

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

Thread 1 Thread 2 Thread 3 Thread 4

(idle) (idle)

(idle) (idle)(idle)

Exp(36)

(idle) (idle)(idle)

Sequential (i.e.,
non-parallelizable)
part

Synchronize/communicate

Synchronize/communicate

Parallelizing a problem: a silly (but complex) example
Sum up a bunch of numbers (here: from 1 to 8) and calculate the Exp od the sum using 4 threads

Programmer’s perspective: planning complex parallelization

Algorithm design

 Identify parallelizable portions of the problem

 Minimize the sequential (non-parallelizable) part

 Consider/minimize synchronization and inter-
thread communication

 Avoid race conditions

 Avoid simultaneous I/O by multiple threads

 Threads organization
 Single process with multiple threads
 Multiple single-threaded processes
 Multiple multi-threaded processes

Constraints

 CPUs and memory possibly scattered over multiple
networked machines

 #threads <= #cores (on each machine)

 Combined memory taken up by all processes not to
exceed total machine’s memory

 Storage capacity and access

 A process (with all its threads and memory) can
only run on one machine

 No direct data sharing between processes

For complicated algorithms with varying levels of parallelism and communication, programs are typically
written using appropriate parallelization tools (libraries of functions). By design, these programs fall into one
of the following categories:

 Single multi-threaded process (by far the largest class)
 Sometimes called shared memory model
 Tools: pthreads, OpenMP
 Advantage: all threads have access to same memory – no or easy communication
 Disadvantage: can only run on one machine (but really no problem if machine huge)

 Multiple single-thread processes
 Sometimes called distributed memory model
 Tools: Message-Passing Interface (MPI) (Implementations: OpenMPI, mpich2)
 Advantage: can run on a single machine and/or across multiple machines
 Disadvantage: no direct access to process memory by other processes – data must be passed

using messages – costly, especially between machines

 Multiple multi-threaded processes
 Tools: combination of OpenMP, pthreads, MPI
 Advantages: optimized, high-level parallelism possible
 Advantage: can run on a single machine and/or across multiple machines

Programmer’s perspective: tools

[root@cbsuxm01 ~]# ldd /programs/bin/blast+/blastx

linux-vdso.so.1 => (0x00007ffd0f79b000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007facee470000)

libz.so.1 => /lib64/libz.so.1 (0x00007facee25a000)

libbz2.so.1 => /lib64/libbz2.so.1 (0x00007facee04a000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007facede46000)

libnsl.so.1 => /lib64/libnsl.so.1 (0x00007facedc2c000)

libm.so.6 => /lib64/libm.so.6 (0x00007faced92a000)

libc.so.6 => /lib64/libc.so.6 (0x00007faced55c000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007faced346000)

/lib64/ld-linux-x86-64.so.2 (0x00007facee68c000)

Find out how a program is parallelized
(easy only for executables using shared libraries)

[root@cbsuxm01 ~]# ldd /programs/discovar/bin/Discovar

linux-vdso.so.1 => (0x00007fff1cd8a000)

libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007fc9ba791000)

libm.so.6 => /lib64/libm.so.6 (0x00007fc9ba48f000)

libgomp.so.1 => /lib64/libgomp.so.1 (0x00007fc9ba269000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fc9ba053000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fc9b9e37000)

libc.so.6 => /lib64/libc.so.6 (0x00007fc9b9a6a000)

/lib64/ld-linux-x86-64.so.2 (0x00007fc9baa98000)

[root@cbsuxm01 ~]# ldd /programs/ima2p/bin/IMa2p

linux-vdso.so.1 => (0x00007ffd843b9000)

libm.so.6 => /lib64/libm.so.6 (0x00007f5100e44000)

libmpi_cxx.so.1 => /usr/lib64/openmpi/lib/libmpi_cxx.so.1 (0x00007f5100c29000)

libmpi.so.12 => /usr/lib64/openmpi/lib/libmpi.so.12 (0x00007f5100945000)

libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007f510063e000)

libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007f5100428000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f510020c000)

libc.so.6 => /lib64/libc.so.6 (0x00007f50ffe3f000)

/lib64/ld-linux-x86-64.so.2 (0x00007f5101146000)

libopen-rte.so.12 => /usr/lib64/openmpi/lib/libopen-rte.so.12 (0x00007f50ffbc3000)

libopen-pal.so.13 => /usr/lib64/openmpi/lib/libopen-pal.so.13 (0x00007f50ff91f000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007f50ff71b000)

librt.so.1 => /lib64/librt.so.1 (0x00007f50ff513000)

libutil.so.1 => /lib64/libutil.so.1 (0x00007f50ff310000)

libhwloc.so.5 => /lib64/libhwloc.so.5 (0x00007f50ff0d3000)

libnuma.so.1 => /lib64/libnuma.so.1 (0x00007f50feec7000)

libltdl.so.7 => /lib64/libltdl.so.7 (0x00007f50fecbd000)

Find out how a program is parallelized
(easy only for executables using shared libraries)

Amdahl’s Law: More threads not always better
Suppose the total execution time of a program consists of non-parallelizable part 𝑡seq and a part that can be

parallelized, 𝑡par. Then for number of threads 𝑁 we have

Time on a single thread: 𝑇1= 𝑡seq + 𝑡par

Time on 𝑁 threads: 𝑇𝑁= 𝑡seq +
𝑡par

𝑁
(assuming no communication or other delays)

Speedup on 𝑁 threads: 𝑆𝑁 =
𝑇1

𝑇𝑁 large 𝑁
1 +

𝑡par

𝑡seq

Performance
deterioration possible
due to
sync/communication/IO

Ideal: linear scaling

machine

CPU

availa

ble

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 0.931 27.506

cbsulm10 4 64 16 1.962 13.056

cbsulm10 4 64 1 25.619 1.000

cbsumm15 2 24 24 2.058 12.117

cbsumm15 2 24 12 2.593 9.616

cbsumm15 2 24 1 24.930 1.000

cbsum1c2b008 2 8 8 4.193 6.717

cbsum1c2b008 2 8 1 28.161 1.000

machine

CPU

available

cores

available

cores

used

time

(hrs)

speedup

(in machine)

cbsulm10 4 64 64 10.97 2.222

cbsulm10 4 64 16 24.37 1.000

cbsumm15 2 24 24 26.10 2.140

cbsumm15 2 24 12 55.85 1.000

Using BLAST to search swissprot database for matches of 10,000 randomly chosen
human cDNA sequences (swissprot is a good example of a small memory footprint).

Using BLAST to search nr database for matches of 2,000 randomly chosen human cDNA
sequences (nr is a good example of a large memory footprint).

Example: speedup in BLAST

Parallelizing a problem: ‘embarrassingly parallel’ case

File1 File2 File3 File4

File1.gz File2.gz File3.gz File4.gz

gzip

gzip File1 &

gzip File2 &

gzip File3 &

gzip File4 &

Simple! No communication, no sync, no sequential part –
least susceptible to Amdahl’s law

BUT

Threads compete for disk access if too many!

gzip gzip gzip

Single-threaded
processes run
simultaneously

Parallelizing a problem: ‘not so embarrassingly parallel’ case

File1.fastq File2.fatq File3.fastq File4.fastq

File1.bam File2.bam File3.bam File4.bam

Simple! No communication between processes, no sync

BUT

Processes compete form disk access if too many!

tophat
Complex multi-threaded
processes, independent
from one another

tophat tophat tophat

tophat -p 7 -o B_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7073_C3AR7ACXX_B_L1-1_ATCACG_R1.fastq.gz \

fastq/2284_6063_7073_C3AR7ACXX_B_L1-1_ATCACG_R2.fastq.gz >& B_L1-1.log &

tophat -p 7 -o B_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7076_C3AR7ACXX_B_L1-2_TGACCA_R1.fastq.gz \

fastq/2284_6063_7076_C3AR7ACXX_B_L1-2_TGACCA_R2.fastq.gz >& B_L1-2.log &

tophat -p 7 -o B_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7079_C3AR7ACXX_B_L1-3_CAGATC_R1.fastq.gz \

fastq/2284_6063_7079_C3AR7ACXX_B_L1-3_CAGATC_R2.fastq.gz >& B_L1-3.log &

tophat -p 7 -o L_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7074_C3AR7ACXX_L_L1-1_CGATGT_R1.fastq.gz \

fastq/2284_6063_7074_C3AR7ACXX_L_L1-1_CGATGT_R2.fastq.gz >& L_L1-1.log &

tophat -p 7 -o L_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7077_C3AR7ACXX_L_L1-2_ACAGTG_R1.fastq.gz \

fastq/2284_6063_7077_C3AR7ACXX_L_L1-2_ACAGTG_R2.fastq.gz >& L_L1-2.log &

tophat -p 7 -o L_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7080_C3AR7ACXX_L_L1-3_ACTTGA_R1.fastq.gz \

fastq/2284_6063_7080_C3AR7ACXX_L_L1-3_ACTTGA_R2.fastq.gz >& L_L1-3.log &

tophat -p 7 -o S_L1-1 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7075_C3AR7ACXX_S_L1-1_TTAGGC_R1.fastq.gz \

fastq/2284_6063_7075_C3AR7ACXX_S_L1-1_TTAGGC_R2.fastq.gz >& S_L1-1.log &

tophat -p 7 -o S_L1-2 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7078_C3AR7ACXX_S_L1-2_GCCAAT_R1.fastq.gz \

fastq/2284_6063_7078_C3AR7ACXX_S_L1-2_GCCAAT_R2.fastq.gz >& S_L1-2.log &

tophat -p 7 -o S_L1-3 --transcriptome-index genome/transcriptome/ZmB73_5a_WGS \

--no-novel-juncs genome/maize \

fastq/2284_6063_7081_C3AR7ACXX_S_L1-3_GATCAG_R1.fastq.gz \

fastq/2284_6063_7081_C3AR7ACXX_S_L1-3_GATCAG_R2.fastq.gz >& S_L1-3.log &

Mixed parallelization: running several simultaneous multi-threaded tasks (each
processing different data) on a large machine (here: 64-core)

Faster than tophat -p 63 !

Common situation in ‘end user’ bioinformatics

 Instances of complex, multi-threaded applications run concurrently on distinct sets of input data

 Examples: BLAST, bwa, tophat, STAR, Trinity, …..
 applications ‘pre-programmed’ for us by software developers

 What we need to know about each instance of the application

 how to run the application, know/control number of threads it uses
 memory, disk, disk I/O, time requirements of the application (may depend on number of threads)
 optimal number of threads for given input data, machine
Run, monitor, observe, extrapolate…

 Load balancing: How to manage multiple instances subject to resource constraints

 (#instances) X (#threads_per_instance) < #cores on each machine
 (memory_per_instance) X (#instances) < total_machine_memory
 competition for I/O bandwidth
 sufficient scratch disk storage

Parallelism is typically controlled by a program option
 read documentation to find out if your program has this feature
 Look for keywords like “multithreading”, “parallel execution”, “multiple processors”, etc.

Running multi-threaded applications

A few examples:

blastall -a 8 [other options]

blastx -num_threads 8 [other options]

tophat –p 8 [other options]

cuffdiff –p 8 [other options]

bwa –t 8 [other options]

bowtie –p 8 [other options]

Remember speedup is not
perfect, so optimal number of
threads needs to be optimized
by trial and error using subset of
input data

blastx –num_threads 2 -db ./databases/swissprot -query seq_tst.fa

 >100% CPU indicates the program is multithreaded
 Multiple threads within a single process rather than multiple processes

Running multi-threaded applications

What if the number of threads is not specified?

Default number of threads for a multi-threaded programs

• Depends on the program’s author(s)
• Sometimes 1
• Sometimes equal to the number of cores found on machine (rather nasty in shared environment)
• Programs parallelized with OpenMP ‘obey’ environment variable OMP_NUM_THREADS

export OMP_NUM_THREADS=10

will make such program use up to 10 threads (BioHPC default: 1)

• Programs parallelized with Intel’s Math Kernel Library (MKL) require variable MKL_NUM_THREADS
(BioHPC default: 1) in addition to OMP_NUM_THREADS

• Programs parallelized with pthreads: you are at the developer’s mercy….

Message-Passing Interface (MPI)

 Used to create programs running as multiple interacting processes

 May run across multiple machines (Distributed Memory) – may use huge number of cores (in principle)

 Interaction between processes by sending/receiving messages

 mechanism dependent on where processes are running (one or multiple machines), but generally costly…

 Each MPI process may be multithreaded (i.e., use pthreads and/or OpenMP)

 Various implementations (OpenMPI and mpich2 most popular – both available on BioHPC cloud)

Running MPI applications

Running MPI programs

Programs using MPI are started using a launcher program mpirun (some variations on that name are possible,
depending on MPI implementation)

Run using 10 processes on the local machine (the one the command is run on)

mpirun -np 10 myprogram >& somefile.log &

To run on multiple machines, construct a file with a list of machines, mymachines, possibly specifying some limits on
number of processes to be allowed

cbsum1c1b001 slots=4 max_slots=4

cbsum1c2b003 max_slots=4

cbsum1c2b002 slots=4

Then, for example, the command

mpirun -hostfile mymachines -np 14 myprogram >& somefile.log &

will launch 4 processes on cbsum1c1b001, 4 more on cbsum1c2b003, and 6 on cbsum1c2b002 (oversubscription
possible on this node)

Plenty of other options for distributed processes on nodes.

NOTE: each MPI process
may be multi-threaded!

 If the application is running in the background (i.e., with “&”), it can be stopped with the kill
command

kill -9 <PID>

Where <PID> is the process id obtained rom the ps command. For example,

kill -9 18817

 To kill a parallel application consisting of multiple processes, use the PID of the top parent process,
preceded by a dash

kill -9 -18817 (technically, this kills all processes in the process group 18817)

 If some processes, still left over, you may have to track them down (with ps) and kill individually

Killing parallel tasks may be tricky

Monitoring a running task using top

blastx –num_threads 2 -db ./databases/swissprot -query seq_tst.fa

 >100% CPU indicates the program is multithreaded
 Multiple threads within a single process rather than multiple processes

Monitoring a running task using htop

/usr/bin/time –v blastx -db ./databases/swissprot -num_alignments 1 -num_threads 3 -query

seq_tst.fa -out seq_tst.fa.hits.txt >& run.log

Command being timed: "blastx -db ./databases/swissprot -num_alignments 1 -num_threads 3 -query

seq_tst.fa -out seq_tst.fa.hits.txt"

User time (seconds): 35.86

System time (seconds): 0.15

Percent of CPU this job got: 292%

Elapsed (wall clock) time (h:mm:ss or m:ss): 0:12.31

Average shared text size (kbytes): 0

Average unshared data size (kbytes): 0

Average stack size (kbytes): 0

Average total size (kbytes): 0

Maximum resident set size (kbytes): 208488

Average resident set size (kbytes): 0

Major (requiring I/O) page faults: 0

Minor (reclaiming a frame) page faults: 59067

Voluntary context switches: 51

Involuntary context switches: 147

Swaps: 0

File system inputs: 0

File system outputs: 312

Socket messages sent: 0

Socket messages received: 0

Signals delivered: 0

Page size (bytes): 4096

Exit status: 0

Monitoring a single task using /usr/bin/time tool

Shows ‘user’ time
combined over all
threads

Content of run.log

Max memory the
process used in its
lifetime

Assess I/O activity using iostat
No significant I/O

/programs/bin/labutils/iotop -o -u bukowski

No I/O-intensive processes running

Three gzip processes running

Monitoring I/O using iotop tool

Read/write rate
% time spent
waiting for I/O

Monitoring I/O using htop tool

Monitoring I/O
 Notoriously hard, because

 most I/O operations are buffered and cached, i.e., go through memory if enough available

 I/O behavior of a single task not always representative of that of concurrent tasks

 performance dependent on disk hardware

 slow on cbsum1c* machines
 very fast on the newest machines with NVMEs (SSDs with fast connect)

 performance dependent on data structure (a lot of small files vs few large files)

 Indications of heavy I/O problem:
 small %CPU compared to number of threads in top or htop report
 large %IO in iotop output (% of time the process spends waiting for I/O operation)
 continuously high Read-Write rates in iotop or htop report

Ultimate test: monitor performance as a function of number of concurrent tasks

Balancing the load: multiple independent tasks

 Suppose we monitored/profiled our application and we already know

 memory needed per instance
 optimal number of threads per instance
 at least a vague idea about I/O needs per instance

 N - number of instances to be run concurrently

What if the total number of tasks we have is >> N ?

Example: compress 9 files, running at most 3 instances of gzip at a time

#!/bin/bash

gzip [options] file1 &

gzip [options] file2 &

gzip [options] file3 &

wait

gzip [options] file4 &

gzip [options] file5 &

gzip [options] file6 &

wait

gzip [options] file7 &

gzip [options] file8 &

gzip [options] file9 &

Balancing the load: pedestrian way

Example: 9 tasks, 3 at a time

(NOTE: wait – makes the script wait for everything
before it to finish before proceeding)

Not too efficient, if compressing different file* takes different amounts
of time

wait needs to wait for the slowest of the three instances

Using a text editor, create a file called (for example) TaskFile
(This is NOT a script, just a list of commands to run)

A longer file could be created, for example,
using a shell script similar to:

gzip file1

gzip file2

gzip file3

gzip file4

gzip file5

gzip file6

gzip file7

gzip file8

gzip file9

Load balancing using GNU parallel
https://www.gnu.org/software/parallel/

#!/bin/bash

rm –f TaskFile

for i in {1..3000}

do

echo gzip file${i} >> TaskFile

done

https://www.gnu.org/software/parallel/

Load balancing using GNU parallel tool

parallel -j NP < TaskFile >& log &

Then run the command (assuming the TaskFile and all file* files are in the current
directory)

 parallel will execute tasks listed in TaskFile using up to NP instances at a time
 The first NP tasks will be launched simultaneously
 The (NP+1)th task will be launched right after one of the initial ones completes and a core

becomes available
 The (NP+2)nd task will be launched right after another core becomes available
 …… etc., until all tasks are distributed

 Only up to NP tasks are running at a time (less at the end)

 All NP cores always kept (on average) busy (except near the end of task list) – Load Balancing

where NP is the number of instances to use (e.g., 3)

GNU parallel: general idea and syntax

Suppose someprog is a program taking one argument, and we want to run it N times with N values of that
argument:

someprog a1

someprog a2

someprog a3

…

someprog aN

GNU parallel can help:

parallel [options] someprog ::: a1 a2 a3 … aN

will start these commands running concurrently

[options] are there to control things (examples later)

(so, in essence, parallel just concatenates someprog with each of ai and treats those as commands to run)

GNU parallel: general idea and syntax

Instead of listing arguments, we can put them in a file, say argfile, listing one argument per line like this:

a1

a2

a3

…

aN

Then run parallel like this (note the four colons ::::)

parallel [options] someprog :::: argfile

Equivalent forms:

parallel [options] -a argfile someprog

cat argfile | parallel [options] someprog

parallel [options] someprog < argfile

Remember the ‘original’ command we introduced parallel with?

parallel -j 10 < TaskFile

where TaskFile was

gzip file1

gzip file2

…

gzip file3000

This is like running

parallel –j 10 someprog :::: TaskFile

with empty someprog and ‘arguments’ in the form gzip file1

GNU parallel: general idea and syntax

GNU parallel: general idea and syntax

What is the someprog command needs more than 1 argument?

parallel -N2 someprog ::: a1 a2 a3 a4 a5 a6

will produce the following commands:

someprog a1 a2

someprog a3 a4

someprog a5 a6

GNU parallel: general idea and syntax
What if we need to run a not one, but a few commands?

parallel someprog1 {}\; someprog2 {} ::: a1 a2 a3

({} represents the argument, if only one)

will result in

someprog1 a1; someprog2 a1 # run one after the other, but concurrently with other such pairs
someprog1 a2; someprog2 a2

someprog1 a3; someprog2 a3

Another example: someprog1 and someprog2 run on different arguments

parallel -N2 someprog1 {1}\; someprog2 {2} ::: a1 a2 a3 a4

({1},{2} represent individual arguments, if multiple)

will result in

someprog1 a1; someprog2 a2

someprog1 a3; someprog2 a4

GNU parallel: more control through options

parallel -j 4 --delay 5 --load 200% --memfree 2G someprog :::: argfile

-j 4 run up to 4 commands concurrently
--delay 5 start each command 5 seconds after previous one
--load 200% start command only if load on the machine is not more than 2 threads
--memfree 2G start command only if there is at least 2G of RAM available

Caution:

If someprog is multi-threaded, it will ‘occupy’ not 4, but (4 x number_threads_per_task) CPU cores !!!

GNU parallel: remote execution (and more options)

parallel -j 2 \

-S machine1 -S machine2 \

--transferfile BBB_{} \

--return BBB_{}.gz \

--workdir /workdir/bukowski \

--cleanup \

--joblog run.log \

gzip ::: 1 2 3

What will happen here:

• Commands gzip BBB_1, gzip BBB_2, and gzip BBB_3 will be run, at most 2 at a time, using machines machine1,
machine2, accessed via ssh

• Files BBB_1, BBB_2, and BBB_3 will be transferred from the current directory to the relevant machine to directory
/workdir/bukowski, and the ‘gzipping’ will take place there.

• Upon completion, compressed files BBB_1.gz, BBB_2.gz, and BBB_3.gz will be transferred back to the current directory.
• Files on the remote machines will be cleaned up
• Log of the entire operation, with some useful timing information, will be saved in file run.log (in the current directory on the

current machine, from which parallel was submitted)

NOTE: user should have passwordless ssh access set up between the machines to avoid being asked for password…

GNU parallel: killing tasks

Find the process ID (PID) of the parallel process

ps -ef | grep parallel

bukowski 28310 1710 1 13:50 pts/13 00:00:00 perl /programs/parallel/bin/parallel -j 2 gzip BBB_{} ::: 1 2 3

bukowski 28558 1710 0 13:50 pts/13 00:00:00 grep --color=auto parallel

Now send the SIGTERM signal to the process c- this will ‘drain the queue’ (allow tasks already running to finish)

kill -15 28310

parallel: SIGTERM received. No new jobs will be started.

parallel: Waiting for these 2 jobs to finish. Send SIGTERM again to stop now.

Send the SIGTERM signal again to kill off the remaining running processes

kill -15 28310

xargs – ‘older brother’ of GNU parallel
Functionality of xargs similar (but more limited) than that of parallel

some options of parallel designed to mimic those of xargs

Example:

Let TaskFile contain a list of files

file1

file2

file3

cat TaskFile | xargs gzip

will construct (and run) the following, using a single
process (i.e., 3 gzip operations one after another)

gzip file1 file2 file3

cat TaskFile | xargs -n 1 -P 2 gzip

will construct (and run) the following, using up to 2
processes at a time

gzip file1

gzip file2

gzip file3

Exercise 3: timing bwa mem alignment

example_1.fastq.gz
example_2.fastq.gz

Reference genome

bwa mem samtoolsexample.sam example.bam

bwa mem -M -t 8 genome example_1.fastq.gz example_2.fastq.gz | samtools view -Sb - -o example.bam

parallel (here: 8 threads) sequential

Pipe to avoid explicit creation of example.sam

Objective:
run this on varying numbers of threads
measure time, memory, I/O as functions of that number

GNU parallel limitations

 Parallel is a clever tool for submitting multiple commands in the background, possibly on multiple machines

 Very useful extra options, such as (and there are many more):

-j 4 limit the number of commands run concurrently (here: 4)
--delay 5 start each command some time (here: 5 seconds) after previous one
--load 200% start command only if load on the machine is not more than some number (here: 2) of

threads
--memfree 2G start command only if there is at least some mount (here: 2G) of RAM is available
--timeout 60 impose timeout (here: 60 s) on each command

 But there are limitations to what parallel can do for you:

• Once a command is running, no control over how many cores or how much memory it uses (may overwhelm machine)

• Can’t control individual commands

• No way to enforce fair sharing of resources among multiple users and/or user groups

Need a SCHEDULER to deal with these!

GNU parallel vs a full scheduler

Functionality Parallel Scheduler

Start multiple jobs on limited resources yes yes

Terminate individual jobs no (or hard) yes

Control #cores and memory of running jobs no yes

Prioritize jobs of different users, groups no yes

Control job timeout yes yes

Streamline submission based on job requirements no yes

File pre-staging yes yes (sort of)

Job staggering yes yes ?

Job accounting no (or limited) yes

Some popular schedulers

 Obsolete or commercialized

 PBS: Portable Batch System

 SGE: Sun Grid Engine

 LFS: Load Sharing Facility

 Lava: light version of LSF

 TORQUE (version) of PBS

 UNIVA: commercial fork of SGE

 Free, modern, and actively developed

 SLURM: Simple Linux Utility for Resource Management

Structure of SLURM cluster(s)

slurmd

machine1

slurmd

machine2

slurmd

machine3

slurmctld

machine4

Execution nodes

Control node
(may serve as
exec node, too)

slurmdbd
mysqld

machine5
Accounting node
(SQL database)

Services (daemons)

slumrd: starts and manages jobs on
a compute node

slurmctld: decides where and when
to dispatch jobs, tracks jobs

slurmdbd: logs jobs information into
database, maintains user and
account information

Cluster

Cluster Cluster

SLURM setup is an admin task

 Non-trivial setup and maintenance

 Require extra pieces of software installed running on all machines involved

 To be started, configured, and maintained by an administrator (users generally cannot do it)

 Takes significant know-how and work to set up and configure

 Configuration typically tailored specifically to a particular cluster/lab/group/institution

 Users need to follow usage guidelines for the specific scheduler configuration

 Learning curve involved – different for each cluster

Configuration of resources in SLURM

 Nodes (machines) grouped into partitions (queues)

 typically collect similar nodes, or nodes with similar function
 each node may belong to multiple partitions
 partition may have per job limits and defaults (run time, memory, max #cores, etc)
 User needs to specify which partition their job is to be submitted to
 One partition is ‘default’

 Cluster may be configured to grant jobs either whole nodes, or node ‘slices’ (i.e., some #cores + some memory)

 jobs are restricted to #cores and RAM requested at submission – will not use more (may crash on attempt!)
 #cores and RAM allocated to a running job are subtracted from the node’s totals – only available resources are

offered to new jobs

 Users organized in (trees of) accounts (e.g., lab groups), with defined shares, determining usage priorities

 Per user and/or per group limits or privileges may be defined (QOS – quality of service)

SLURM at BioHPC

 ‘SLURM on demand’ clusters:

 possible to spin up by any user on their reserved or Lab-owned machine(s)
 access for all users with reservations on these machines
 temporary – will disappear upon the end of reservation
 not configurable (at present, only a single configuration is offered)

 What are they good for:
load balancing of single or multiple users’ jobs (like parallel, but with more control)
re-using SLURM scripts brought from elsewhere (some customization typically be required)
running pipelines which require SLURM for load balancing (and some do)

 Permanent clusters, made up of Lab- or Department-owned machines, customized to serve those Labs or
Departments. Access for lab members only.

 BSCB cluster (cbsubscb): 15 nodes, 1136 CPU cores, 5.8 TB RAM
 cbsuxu
 cbsuorm
 cbsugaurav
 others welcome – contact us to discuss/set up

‘SLURM on demand’ at BioHPC
 Reserve one or more machines

 Log in to one of the reserved machines

 Use manage_slurm tool to spin up and control (some aspects of) the cluster

[bukowski@cbsum1c2b005 ~]$ manage_slurm

Usage: manage_slurm <action> [args]

manage_slurm new machine1,machine2,...

• to create a SLURM cluster on the named machines (need an active reservation on all machines). The first node

will be the "master node". All users with active reservations on the full set of machines will be given

access to the cluster, and will automatically be added or removed as their reservation status changes.

manage_slurm kill masterNode

• to end the slurm cluster identified by the master node

manage_slurm addNode masterNode machine

• adds the machine to the cluster identfied by the masterNode. Need an active reservation on this machine for

all current cluster users.

manage_slurm add Node-force masterNode machine

• Like addNode, but will remove cluster access for any users necessary to add the node (including deleting any

of their submitted jobs). Try addNode first to get a list of users that will be removed

manage_slurm removeNode masterNode machine

• Remove a node from the cluster identified by masterNode. The machine should not be the masterNode; removing

the masterNode will kill entire cluster, so use "kill" command instead.

manage_slurm list

• List and decribe all clusters that you have access to. Reports the list of machines, number of CPUs/memory,

and list of authorized users

More info: https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=689#c

https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=689#c

‘SLURM on demand’ at BioHPC configuration

At present, only one configuration offered:

 One partition (‘regular’)

 contains all nodes
 no per job time limit
 no per job CPU core limits
 4 GB RAM per job default

 One ‘account’, containing all users having reservations on all machines of the ‘cluster’

 Fairshare scheduling policy with all users ‘equal’ (more details later)
 No per user limits

SLURM: know your cluster – partitions, nodes summary

[bukowski@cbsum1c2b003 slurm]$ sinfo --cluster=cbsubscb

CLUSTER: cbsubscb

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

short* up 4:00:00 16 mix cbsubscb[01-15],cbsubscbgpu01

regular up 1-00:00:00 16 mix cbsubscb[01-15],cbsubscbgpu01

long7 up 7-00:00:00 15 mix cbsubscb[01-15]

long30 up 30-00:00:0 15 mix cbsubscb[01-15]

gpu up 3-00:00:00 1 mix cbsubscbgpu01

[bukowski@cbsum1c2b003 ~]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

regular* up infinite 4 idle cbsum1c2b[003-004,006-007]

Info on ‘current cluster’, which the node belongs to

Info on other clusters

[bukowski@cbsum1c2b003 slurm]$ scontrol show nodes=cbsum1c2b006

NodeName=cbsum1c2b006 Arch=x86_64 CoresPerSocket=1

CPUAlloc=0 CPUTot=8 CPULoad=0.01

AvailableFeatures=(null)

ActiveFeatures=(null)

Gres=(null)

NodeAddr=128.84.181.157 NodeHostName=cbsum1c2b006

OS=Linux 3.10.0-957.10.1.el7.x86_64 #1 SMP Mon Mar 18 15:06:45 UTC 2019

RealMemory=15883 AllocMem=0 FreeMem=3254 Sockets=8 Boards=1

State=IDLE ThreadsPerCore=1 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A

Partitions=regular

BootTime=2020-04-02T12:56:07 SlurmdStartTime=2020-05-10T08:50:09

CfgTRES=cpu=8,mem=15883M,billing=8

AllocTRES=

CapWatts=n/a

CurrentWatts=0 AveWatts=0

ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

SLURM: know your cluster – node details

SLURM: know your cluster – partition details

[bukowski@cbsum1c2b003 slurm]$ scontrol show partitions

PartitionName=regular

AllowGroups=ALL AllowAccounts=ALL AllowQos=ALL

AllocNodes=ALL Default=YES QoS=N/A

DefaultTime=NONE DisableRootJobs=NO ExclusiveUser=NO GraceTime=0 Hidden=NO

MaxNodes=UNLIMITED MaxTime=UNLIMITED MinNodes=0 LLN=NO

MaxCPUsPerNode=UNLIMITED

Nodes=cbsum1c2b003,cbsum1c2b004,cbsum1c2b006,cbsum1c2b007

PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO

OverTimeLimit=NONE PreemptMode=OFF

State=UP TotalCPUs=32 TotalNodes=4 SelectTypeParameters=NONE

JobDefaults=(null)

DefMemPerNode=4096 MaxMemPerNode=UNLIMITED

SLURM and you – typical scenario
 Determine job’s CPU-cores and RAM requirements

 Write a shell script that will
create a job directory on local scratch file system
prepare (copy) input files to job’s scratch
launch the application (output to be written to job’s scratch)
copy output files back to permanent storage (e.g., home directory)

 Submit script using sbatch command with desired options (#cores, RAM, partition, nodes, …)
may embed SLURM options in the script header
interactive session may be requested using srun command
submit as many jobs as you need

 Jobs are queued up and wait for resources and their turn to start on some node (competing with other jobs)

 Check on your jobs using squeue, state of cluster using sinfo, scontrol

 Control/cancel your jobs (scontrol update, scancel)

 Get information about finished jobs using sacct

 Handy summary of SURM commands: http://slurm.schedmd.com/pdfs/summary.pdf

http://slurm.schedmd.com/pdfs/summary.pdf

SLURM: typical shell script

#!/bin/bash –l

Create a scratch directory for this job

WDIR=/workdir/bukowski/$SLURM_JOB_ID

mkdir –p $WDIR

cd $WDIR

#Copy input to the scratch directory

cp /home/bukowski/inputs/input.file .

Run the computation

/home/bukowski/programs/my_program < input.file >& output.file.$SLURM_JOB_ID

Copy results back to permanent storage

cp output.file.$SLURM_JOB_ID /home/bukowski/outputs

Clean up after job

cd /workdir/bukowski

rm –Rf $SLURM_JOB_ID

Typical shell script, call it my_script.sh
Integer unique for every
SLURM job

Make job inherit your
login environment

So, the submission command could look like

sbatch --nodes=1 --ntasks=6 --mem=4000 my_script.sh

Many options have shorthand notation, e.g.,

sbatch -N 1 -n 6 --mem=4000 my_script.sh

SLURM: submitting a script

sbatch [options] my_script.sh [arguments]

--nodes=1 (number of nodes, must be 1 for all non-MPI jobs)
--ntasks=8 (number of tasks; task=1 slot=1 thread; default: 1)
--mem=8000 (request 8 GB of memory for this job; default: 4GB)
--time=1-20:00:00 (wall-time limit for job; here: 1 day and 20 hours)
--partition=regular,long30 (request partition(s) a job can run in; here: regular and long30)
--account=bscb09 (project to charge the job to)
--chdir=/home/bukowski/slurm (start job in specified directory; default is the directory in which sbatch was invoked)
--job-name=jobname (name of job)
--output=jobname.out.%j (write stdout+stderr to this file; %j will be replaced by job ID)
--mail-user=email@address.com (set your email address)
--mail-type=ALL (send email at job start, end or crash - do not use if this is going to generate thousands of e-mails!)

Here are some more important [options] with examples:

SLURM: specifying option in script header

#!/bin/bash -l

#SBATCH --nodes=1

#SBATCH --ntasks=8

#SBATCH --mem=8000

#SBATCH --time=1-20:00:00

#SBATCH --partition=regular,long30

#SBATCH --account=bscb09

#SBATCH --chdir=/home/bukowski/slurm

#SBATCH --job-name=jobname

#SBATCH --output=jobname.out.%j

#SBATCH --mail-user=email@address.com

#SBATCH --mail-type=ALL

Rest of the script goes here…

Typical script header may specify submission options after #SBATCH keyword

Options given directly on sbatch command line supersede the ones in header

SLURM: other interesting options/comments

--ntasks

used to request the number of threads (cores) for a job (also, set OMP_NUM_THREADS accordingly)
-N 1

non-MPI jobs must run on a single machine (otherwise some cores may be allocated on other nodes and won’t
be useful)

--nodelist=cbsubscb11

run on a specific node (otherwise it will start on some node within requested partitions – unknown in advance!)

--exclude=cbsubscb10,cbsubscbgpu01

exclude specified nodes

--chdir and --output
directories specified in these options must be present on all nodes where a job can start (e.g., $HOME)

Alternative core and memory specifications

sbatch –N 1 -n 8 --cpus-per-task=3 --mem-per-cpu=2G my_script.sh

sbatch –n 24 --mem=48G my_script.sh

SLURM: where to submit jobs from?

This is configurable, but at BioHPC

 Any node of the cluster (if you have ssh login access to it)

sbatch [options] my_script.sh [arguments]

 Any machine configured to use the same slurmdbd (database) service as the cluster in question, e.g., the login node
cbsulogin.biohpc.cornell.edu. Use the --clusters option to indicate the cluster to submit to:

sbatch --clusters=cbsum1c2b003 [options] my_script.sh [arguments]

 Directory a job is submitted from becomes the job’s ‘startup directory’ and so it must exist on all nodes the job may
start on. $HOME is a good choice

 job’s ‘startup directory’ may be changed using option --chdir
 jobs should use local scratch storage (rather than ‘startup directory’) for I/O-intensive computations

(some of) Environment Variables available within a SLURM job

SLURM_JOB_CPUS_PER_NODE : number of CPU cores (threads) allocated to this job

SLURM_NTASKS : number of tasks, or slots, for this job (as given by --ntasks option)

SLURM_MEM_PER_NODE : memory requested with --mem option

SLURM_CPUS_ON_NODE : total number of CPUs on the node (not only the allocated ones)

SLURM_JOB_ID : job ID of this job; may be used, for example, to name a scratch directory (subdirectory

of /workdir, or output files) for the job. For array jobs, each array element will have a separate SLURM_JOB_ID

SLURM_ARRAY_JOB_ID : job ID of the array master job

SLURM_ARRAY_TASK_ID : task index of a task within a job array

SLURM_ARRAY_TASK_MIN, SLURM_ARRAY_TASK_MAX : minimum and maximum index of jobs within the array

Complete list – in section 'OUTPUT ENVIRONMENT VARIABLES‘ of https://slurm.schedmd.com/sbatch.html.

https://slurm.schedmd.com/sbatch.html

SLURM: Job arrays (array jobs?)

#!/bin/bash

Prepare the scratch directory for the job and 'cd' to it

WDIR=/workdir/$SLURM_JOB_ID

mkdir -p $WDIR

cd $WDIR

Copy the file to gzip from network-mounted directory

cp /shared_data/Parallel_workshop/BBB_$SLURM_ARRAY_TASK_ID .

Run the compression

gzip BBB_$SLURM_ARRAY_TASK_ID

Copy the result back into the result directory (here: same as submission dir)

cp BBB_${SLURM_ARRAY_TASK_ID}.gz $SLURM_SUBMIT_DIR

Clean up

cd $SLURM_SUBMIT_DIR; rm -Rf $WDIR

Consider script my_array_script.sh (objective: compress files BBB_1, BBB_2, BBB_3)

Now submit this script as job array:

sbatch --array=1-3 [other_options] my_array_script.sh

This single command will submit three separate jobs, each running my_array_script.sh, but in each the value of
SLURM_ARRAY_TASK_IDwill be different (one of 1, 2, or 3) . This variable is provided as a result of the --array option.

SLURM: interactive jobs

srun –n 2 –N 1 --mem 2G --pty --preserve-env --cpu-bind=no /bin/bash

This will create a job (can check with squeue) and open an interactive bash shell on a machine picked by SLURM

This shell will be constrained to the number of cores an memory requested

After interactive work finished, exit the shell (Ctrl-D or ‘exit’)

On some clusters (cbsubscb), salloc may be configured to automatically execute the srun command as above

srun: very much like sbatch, except it works in real time rather than batch mode

[bukowski@cbsum1c2b003 slurm]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

19 regular blast_te bukowski PD 0:00 1 (Resources)

18 regular bwa_test bukowski R 0:48 1 cbsum1c2b003

20_1 regular array_te bukowski R 0:10 1 cbsum1c2b004

20_2 regular array_te bukowski R 0:10 1 cbsum1c2b004

20_3 regular array_te bukowski R 0:10 1 cbsum1c2b004

SLURM: checking on jobs using squeue

[bukowski@cbsum1c2b003 slurm]$ ~bukowski/SLURM*/scr*/squeue_l –cluster=cbsum1c2b003

CLUSTER: cbsum1c2b003

JOBID REQ_NODES EXC_NODES MIN_MEMORY PARTITION NAME USER STATE TIME TIME_LIMI NODES CPUS NODELIST(REASON) PRIORITY START_TIME

24 cbsum1c2b003 2G regular blast_te bukowski PENDING 0:00 UNLIMITED 1 8 (Resources) 0.00000145519152 2021-05-10T11:51:37

23 4G regular bwa_test bukowski RUNNING 0:57 UNLIMITED 1 8 cbsum1c2b003 0.00000145519152 2020-05-10T11:51:11

25_1 4G regular array_te bukowski RUNNING 0:31 UNLIMITED 1 1 cbsum1c2b004 0.00000142958015 2020-05-10T11:51:37

25_2 4G regular array_te bukowski RUNNING 0:31 UNLIMITED 1 1 cbsum1c2b004 0.00000142958015 2020-05-10T11:51:37

25_3 4G regular array_te bukowski RUNNING 0:31 UNLIMITED 1 1 cbsum1c2b004 0.00000142958015 2020-05-10T11:51:37

Default output from squeue is not that informative. It is better to use a more detailed format

squeue -o '%.18i %.10n %.20x %m %.30P %.8j %.8u %.8T %.10M %.9l %.6D %C %R %p %S‘

or simply use the wrapper script (which we wrote)

squeue_l

SLURM: checking on jobs using squeue

SLURM: retrieving job accounting information using sacct

[bukowski@cbsum1c2b003 slurm]$ sacct

JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------

3 bwa_test regular acc_cbsum+ 4 COMPLETED 0:0

3.batch batch acc_cbsum+ 4 COMPLETED 0:0

4 bwa_test regular acc_cbsum+ 1 COMPLETED 0:0

4.batch batch acc_cbsum+ 1 COMPLETED 0:0

5 bwa_test regular acc_cbsum+ 1 COMPLETED 0:0

5.batch batch acc_cbsum+ 1 COMPLETED 0:0

For each job, all job steps are listed (job itself + the batch) – hence two lines per job.

SLURM: more job accounting information using sacct_l

JobID JobIDRaw JobName User NodeList ReqMem

-------------------- -------------------- ---------- --------- --------------- --

15 15 bwa_test bukowski cbsum1c2b004 4Gn

15.batch 15.batch batch cbsum1c2b004 4Gn

16_1 17 array_test bukowski cbsum1c2b005 4Gn

16_1.batch 17.batch batch cbsum1c2b005 4Gn

MaxRSS MaxVMSize NCPUS Start CPUTime TotalCPU UserCPU Elapsed State

---------- ---------- ---------- ------------------- ---------- ---------- ---------- ---------- --------

8 2020-05-10T11:29:53 00:19:36 12:26.591 12:13.738 00:02:27 COMPLETED

1402336K 2055932K 8 2020-05-10T11:29:53 00:19:36 12:26.591 12:13.738 00:02:27 COMPLETED

1 2020-05-10T11:30:12 00:01:08 01:03.112 01:02.051 00:01:08 COMPLETED

1980K 132900K 1 2020-05-10T11:30:12 00:01:08 01:03.112 01:02.051 00:01:08 COMPLETED

sacct_l: a simple wrapper around sacct, giving more useful information

Produces rather long lines. In the example below, the lines are broken in half

Left-most columns of sacct_l output for two jobs

Right-most columns of sacct_l output for same two jobs

SLURM: use accounting info to evaluate performance

Signature of an efficient job:

CPUTime (= NCPU*Elapsed) ≈ TotalCPU ≈ UserCPU

MaxRSS < ReqMem

Signs of inefficiency:

TotalCPU < CPUTime inefficient parallelization (e.g., due to sequential part of jab, like file copying)
UserCPU < TotalCPU lot of time spent is system calls (typically due to inefficient I/O)
MaxRSS ≈ ReqMem job may have not enough memory, may crash or swap; increase --mem

MaxRSS: use this to estimate memory needs of your job

 Run test requesting a lot of memory, then for production runs set --mem to a value slightly larger (1.2 times?)
than MaxRSS obtained from the test run

SLURM scheduler

What happens to queued jobs?

 Scheduler (part of slurmctld service daemon) runs periodically (once in about 1 minute)

 keep track of running jobs and their allocated resources

 keep track of available resources

 compute job priorities

 examine each waiting job, check if requested resources available

 if multiple jobs compete, submit the ones with highest priorities

 backfilling: ‘small’ jobs with lower priority may get ahead of ‘big’ jobs with higher priority if it does not affect
the start time of the latter

 accurate timing requests are necessary effective backfilling

Multi-factor job priority

Job_priority =
site_factor +
(PriorityWeightAge) * (age_factor) +
(PriorityWeightAssoc) * (assoc_factor) +
(PriorityWeightFairshare) * (fair-share_factor) +
(PriorityWeightJobSize) * (job_size_factor) +
(PriorityWeightPartition) * (partition_factor) +
(PriorityWeightQOS) * (QOS_factor) +
SUM(TRES_weight_cpu * TRES_factor_cpu,

TRES_weight_<type> * TRES_factor_<type>,
...)

- nice_factor

Weigths: large integer numbers

Factors: numbers between 0 and 1

Association = (user, account, cluster, partition)

QOS: Quality of Service (set of limits or privileges)

TRES: trackable resource

JobSize: related to #cores requested

Fairshare: reflects proportion of resources
consumed by user to user’s ‘share’ in the cluster

Probably the most important factor in multi-
user, multi-group clusters

Fair Tree Fairshare example

AccountA (10 shares) AccountB (20 shares)
User1 (40 shares), usage=20
User2 (30 shares), usage=10

User3 (50 shares), usage=30
User4 (60 shares), usage=40
User5 (10 shares), usage=0

Relative share S:

AccountA: 10/(10+20) = 1/3
AccountB: 20/(10+20) = 2/3
User1: 40/(30+40) = 4/7
User2: 30/(30+40) = 3/7
User3: 50/(50+60+10) = 5/12
User4: 60/(50+60+10) = 6/12
User5: 10/(50+60+10) = 1/12

Relative usage U:

AccountA: 30/(30+70) = 3/10
AccountB: 70/(30+70) = 7/10
User1: 20/(10+20) = 2/3
User2: 10/(10+20) = 1/3
User3: 30/(30+40) = 3/7
User4: 40/(30+40) = 4/7
User5: 0/(30+40) = 0

Level Fairshare LF = S/U:

AccountA: 10/9
AccountB: 20/21
User1: 6/7
User2: 8/7
User3: 35/36
User4: 42/48
User5: Infinity

First sort accounts according to
their LF, then sort users within
accounts according to their LF:

AccountA (LF=10/9)

AccountB (LF=20/21)
User5 (LF=Infinity) Priority: 3/5
User3 (LF=35/36) Priority: 2/5
User4 (LF=42/48) Priority: 1/5

User2 (LF=8/7) Priority: 5/5
User1 (LF=6/7) Priority: 4/5

fair-share_factor
~ Rank

What is ‘Usage’ anyway?

Usage for a running job during time period Dt

U_job = [#cores*core_weigth + RAM*RAM_weigth] * Dt

(defaults: core_weigth=1, RAM_weigth=0, Dt=5 min)

Total usage U_user for a user: sum of U_job over all user’s jobs

Taking into account past usage:

U_user = U_now + d*U_now_1 + d*U_now_2 + d*d*d*U_now_3 + …

Where

U_now_N is the user’s usage U_user from time period N*Dt before the present one

d is set based on the assumed usage half-life time, T_half (e.g., 1 week), i.e.,

d = (1/2)^(Dt/T_half) < 1

SLURM documentation

 Version installed on BioHPC: https://slurm.schedmd.com/archive/slurm-19.05.2/

 upgrade needed soon…

 Man pages for individual commands: https://slurm.schedmd.com/archive/slurm-19.05.2/man_index.html

 SURM command summary handout: http://slurm.schedmd.com/pdfs/summary.pdf

 Formal documentation very thorough, but rather formal, with few specific examples

 often ‘googling’ a specific subject or command will yield more clear info from ‘SLURM practitioners’

https://slurm.schedmd.com/archive/slurm-19.05.2/
https://slurm.schedmd.com/archive/slurm-19.05.2/man_index.html
http://slurm.schedmd.com/pdfs/summary.pdf

