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Overview

What is RNA-seq?

Why RNA-seq?

How to detect differential expression (DE) by
RNA-seq?

— Read Mapping

— Summarization

— Normalization
— DE testing

CBSU RNA-seq analysis pipeline




RNA-Seq: a revolutionary tool for transcriptomics
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How RNA-seq was generated?

Examples of NGS Instrumentation

— Roche 454 sequencer

— lllumina Genome Analyzer (Solexa sequencing)

— Applied Biosystems SOLiD sequencer
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Applications for RNA-seq Analysis

e Transcripts guantification

e Splicing sites discovery and quantification
e Gene discovery

e SNP/INDEL detection

e Allele specific expression




Overview

Millions of short reads

Mapping P Unmapped reads
(Bowtie, BWA, etc)

Map to splicing junctions
Reads alighed to genome |« - map to junction library
- de novo junction (TopHat, etc)

Summarization l - by genes, exons, etc

Table of counts

- Within sample (RPKM, EDASeq)

Normalization - Between sample (Total, upper-quartile)

Table of normalized counts

- Negative binomial (edgeR, Deseq)

DE testing - Fisher, GLM

Table of counts and p-values

Multiple testing l - Bonferroni, BH, etc

. . . Downstream analyses
List of differentially expressed genes - (GO term, GSEA, etc)




Selected list of RNA-seq analysis programs

Table 1 | Selected list of RNA-seq analysis programs

Class Category Package Notes Uses Input
Read mapping
Unspliced Seed methods Short-read mapping package Smith-Waterman extension Aligning reads to a Reads and reference
aligners? (SHRIMP)*? reference transcriptome transcriptome
Stampy?? Probabilistic model
Burrows-Wheeler Bowtie?
transform methods BWA 4 Incorporates quality scores
Spliced aligners Exon-first methods MapSplice52 Works with multiple unspliced Aligning reads to a Reads and reference
SpliceMap5® aligners reference genome. Allows genome
TopHat51 Uses Bowtie alignments for the 1d_en‘t]ﬁca‘t]on of
nowvel splice junctions
Seed-extend methods GSNAPS52 Can use SNP databases
QPALMASS Smith-Waterman for large gaps
Transcriptome reconstruction
Genome-guided Exon identification G.Mor.5e Assembles exons Identifying novel transcripts Alignments to
reconstruction Genome-guided Scripture2® Reports all isoforms using a known reference reference genome
assembly Cufflinks29 Reports a minimal set of isoforms 98M9Me
Genome- Genome-independent Velvetsl Reports all isoforms Identifying novel genes and Reads
independent assembly TransAB 56 transcript isoforms without
reconstruction a known reference genome

Expression quantification

Expression Gene quantification
quantification

Isoform quantification

Alexa-seq®’

Enhanced read analysis of
gene expression (ERANGE)2°

Mormalization by expected
uniquely mappable area
(NEUMA)B2

Cufflinks29

MIs03??

RNA-seq by expectaion
maximization (RSEM)5®

Quantifies using differentially
included exons

Quantifies using unien of exons

Quantifies using unique reads

Maximum likelihood estimation of

relative isoform expression

Quantifying gene expression

Quantifying transcript
isoform expression levels

Reads and transcript
models

Read alignments to
isoforms

Differential
expression

Cuffdiffe®
DegSeq™®
EdgeR77

Differential Expression
analysis of count data
(DESeq)’®

Myrna®®

Uses isoform levels in analysis
Uses a normal distribution

Cloud-based permutation method

Identifying differentially
expressed genes or
transcript isoforms

Read alignments
and transcript
models

*This list is not meant to be exhaustive as many different programs are available for short-read alignment. Here we chose a representative set capturing the frequently used tools for RNA-seq or

tools representing fundamentally different approaches.

Gaber et al., 2011, Nature Methods 8:469



Overview

Millions of short reads

Mapping P Unmapped reads
(Bowtie, BWA, etc)

Map to splicing junctions
Reads alighed to genome |« - map to junction library
- de novo junction (TopHat, etc)

O A2 B . P i e
L

[ o H L —
Juliiirialicatctivii l TRy BY

Table of counts

- Within sample (RPKM, EDASeq)

Normalization - Between sample (Total, upper-quartile)

Table of normalized counts

- Negative binomial (edgeR, Deseq)

DE testing - Fisher, GLM

Table of counts and p-values

Multiple testing l - Bonferroni, BH, etc

. . . Downstream analyses
List of differentially expressed genes - (GO term, GSEA, etc)




Strategies for gapped alignments of
RNA-seq reads to the genome

a Exon-first approach b Seed-extend approach
[ Exon2 ] RNA RNA
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Map reads with Tophat
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Limitation of Tophat

» Two-step approach

* If aread can be mapped to the genome without splicing, it would

not be evaluated for spliced mapping.

* Can be corrected with “--read-realign-edit-dist” option

» Canonical junctions only

e Reads < 75 bp, "GT-AG" introns

e Reads >=75bp, "GT-AG", "GC-AG" and "AT-AC“ introns




Mapping with an aligner that allows for divergent reads

Stampy
*** Maps single and paired Illumina reads to a reference

genome/transcriptome
¢ High sensitivity for indels and divergent reads, up to 10-15%
*** Input: Fastq and Fasta; gzipped or plain; SAM and BAM

** Output: SAM, Magqg's map file




Visualization of read alignment with IGV
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SAM & BAM files

A SAM file (.sam) is a tab-delimited text file that contains sequence alignment
data

A BAM file (.bam) is the binary version of a SAM file
SAMtools (http://en.wikipedia.org/wiki/SAMtools)

— a set of utilities for interacting with and post-processing short DNA sequence read
alignments in the SAM/BAM format

— commands

*  view filters SAM or BAM formatted data
* sort sorts a BAM file based on its position in the reference, as determined by its alignment
* index creates a new index file that allows fast look-up of data in a (sorted) SAM or BAM

s tview to visualize how reads are aligned to specified small regions of the reference genome
(similar to IGV, but




Overview

Millions of short reads

Mapping

(Bowtie, BWA, etc)

P Unmapped reads

Reads aligned to genome

-

Summarization ¢ - by genes, exons, etc

Table of counts

Map to splicing junctions
- map to junction library
- de novo junction (TopHat, etc)

- Between sample (Total, upper-quartile)

L. - Within sample (RPKM, EDASeq)
Normalization

Table of normalized counts

- Negative binomial (edgeR, Deseq)

DE testing

- Fisher, GLM

Table of counts and p-values

Multiple testing l - Bonferroni, BH, etc

List of differentially expressed genes

Downstream analyses

(GO term, GSEA, etc)




Summarizing mapped reads into a gene level count

CDs

Key:

== (Coding sequence

Exons

Introns

Splice junctions

Different summarization strategies will result in the inclusion or exclusion of different

sets of reads in the table of counts.




Transcriptome reconstruction methods
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Methods summarizing transcript set
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Branch point 2
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Two simplified gene models used for gene
expression quantification

Isoform 1 I

Isoform 2 - -

Exon intersection method




Transcript abundance estimate using Cufflinks
“Isoform-expression methods”

‘i m** * uses a statistical model in which the

b Assombly g Abundancs ssimaion probability of observing each
Wi fragment is a linear function of the
abundances of the transcripts from
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Transcript coverage length
—p— and compatibility distribution

omuapgmph T -/ * incorporates distribution of
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* maximizes a function that assigns a
likelihood to all possible sets of
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Trapnell et al., 2010 Nat. Tech. 28:511.




Data QC

1. Check basic statistics of alignment results
— Total reads
— % reads mapped/unmapped
— % reads mapped to unique site
— % reads mapped to multiple sites

2. If the basic statistics looks good, check overall gene expression pattern
among samples by clustering methods, such as MDS or PC.
— to identify potential “outliers” due to contamination or other tech problem.

— to check potential sample mixed-up (for example, samples from biological replicates are
expected to be clustered with one another).

— The clustering among samples may provide underlie biological explanations.

*» Software for RNA-seq QC
- FastQC
- RNA-SeQC
- ShortRead
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Overview

Millions of short reads

Mapping

(Bowtie, BWA, etc)

P Unmapped reads

Reads aligned to genome

-

Summarization l - by genes, exons, etc

Table of counts

Map to splicing junctions
- map to junction library
- de novo junction (TopHat, etc)

- Between sample (Total, upper-quartile)

L. - Within sample (RPKM, EDASeq)
Normalization

Table of normalized counts

- Negative binomial (edgeR, Deseq)

DE testing

- Fisher, GLM

Table of counts and p-values

Multiple testing l - Bonferroni, BH, etc

List of differentially expressed genes

Downstream analyses

(GO term, GSEA, etc)




You have a list of counts, what next?

Condition A Condition B
1 200 300
2 15 30
3 4000 4500

-




Factors affect RNA-seq read counts

1. Molar concentration of RNA molecules
2. Length of RNA molecules

3. Sequence-specific bias




Normalization for RNA-seq Data

The Aim:

To remove systematic technical effects in the data to
ensure that technical bias has minimal impact on
the results.




Normalization methods

*

L)

Total-count normalization

* Low sensitivity in detecting DE, especially for low expressed genes

Upper-quantile (75%) normalization

* asmall number of abundant, differentially expressed genes can create incorrect
impression that less abundant genes are also differentially expressed

e This issue can be mitigated by excluding these genes when normalizing expression
values for the number of mapped reads in each sample.

e use the number of reads mapping to the upper-quartile loci as normalization factor
Normalization by counts of stably expressed genes, such as

housekeeping genes

Trimmed mean (TMM) normalization

For more discussion on normalization, see:

Bullard et al., 2010 Evaluation of statistical methods for normalization and differential
expression in mMRNA-Seq experiments. BMC Bioinformatics 2010, 11:94.




Normalization for RNA-seq data
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Normalization for RNA-seq data
MA-plot
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Normalization using EDASeq package

Gene-level count
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Overview

Millions of short reads

Mapping P Unmapped reads
(Bowtie, BWA, etc)

Map to splicing junctions
Reads alighed to genome |« - map to junction library
- de novo junction (TopHat, etc)

Summarization l - by genes, exons, etc

Table of counts

- Within sample (RPKM, EDASeq)

Normalization - Between sample (Total, upper-quartile)

Table of normalized counts

- Negative binomial (edgeR, Deseq)

DE testing - Fisher, GLM

Table of counts and p-values

Multiple testing l - Bonferroni, BH, etc

v

. . . Downstream analyses
List of differentially expressed genes - (GO term, GSEA, etc)




Statistic framework to detect DE genes

 Which genes are being expressed at different levels in

different conditions?

e |n statistical terms:

— Do our measurements for the expression of a gene in different RNAseq
experiments come from two different distributions or the same

distribution?




Hypothesis Testing

-4

DECISION
Reject H, Fail to Reject H,
5} 2, 3o
) TYpe L'Error Correct Decision
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H,: Null Hypothesis H,: Alternative Hypothesis

H,: The measurements come
from the same distribution (i.e.
the gene is being expressed at

the same level across
conditions.)

A p-value that represents the
probability of the null
hypothesis is calculated.




How to estimate variance (dispersion)

Condition 1 Condition 2

It is unrealistic to have more than a few RNA-seq replicates.

We need to make some assumptions about dispersion.




Model RNA-seq data under Poisson distribution

RNA-seq are counts --> counts follows Poisson distribution
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Problem of overdispersion

Variance

Source of variation:
- Biological variation
- Technical variation from library prep
- GC bias, transcript length bias

- Flowcell effect
etc

Generalized linear model (GLM)
allows incorporation of
known additional variations

Negative binomial
models unexplained variance as

Variance = Mean + ¢ Mean?




Generalized Linear Model (GLM)

- Linear regression that allows distributions such as Poisson

- Can incorporate replicates and other variables

Untreated Treated
Gene Lib Prep 1 Lib Prep 2 Lib Prep 1 Lib Prep 2
FC1 | FC2 FC1 | FC2 FC1 | FC2 FC1 | FC2
Gene 1 95 105 | 110 83 313 | 301 | 325 | 295
Gene 2 10 7 12 5 19 18 24 20
Gene 3 | 4930|4990 | 5050 | 4850 | 4549 | 4529 | 4869 | 4497
Total 10M | 11M | 11M | 8M 1I0M| 9M | 12M | 10M

log(Counts) ~ Treatment + Lib_Prep + Flowcell




Generalized Linear Model (GLM)

log(Counts) ~ log(Total) + Treatment + Lib_Prep + Flowcell

Design matrix

Treatment Lib_Prep Flowcell Count Total reads

1 1 1 95 10
1 1 2 105 11
1 2 1 110 11
1 2 2 83 8

2 1 1 313 10
2 1 2 301 9

2 2 1 325 12
2 2 2 295 10

VoV VvV V VY

counts <- ¢(95,105,110,83,313,301,325,295)

treatment <- <¢(1,1,1,1,2,2,2,2)

lib prep <- ¢(1,1,2,2,1,1,2,2)

flowcell <- ¢(1,2,1,2,1,2,1,2)

norm.factor <- ¢(10,11,11,8,10,9,12,10)

glm.genel <- glm(counts ~ treatment + lib_prep + flowcell,
family=poisson(),offset=1log(norm.factor))

summary(glm.genel)




variance

Overdisperssion problem

Poisson

Negative binomial (DESeq)
Negative binomial (edgeR)

mean

Anders & Huber, 2010, Genome Biology 11: R106



edgeR
Robinson et al., 2009

*»* Estimates the gene-wise dispersions by maximum likelihood,

conditioning on the total count for that gene.

** An empirical Bayes procedure is used to shrink the dispersions
towards a consensus value, effectively borrowing information

between genes.

+»» Differential expression is assessed for each gene using Fisher's

exact test.




Fisher's exact test -evesrsue

-Used with 2x2 contingency table
- Based on hypergeometric distribution

Untreated Treated Total

#

Gene 1 100 250 350
Othergenes| 9999900 = 12,999,750 | 24,999,650

25M

Total 10M




Multiple test correction

* The problem of multiplicity:

arises from the fact that as we increase the number of hypotheses in a test, we also

increase the likelihood of witnessing a rare event, and therefore, the chance to reject
the null hypotheses when it's true (type | error or False-positive).

* Solution: Bonferroni correction

— The most naive way to correct multiplicity

If the significance level for the whole family of tests is a, then the Bonferroni correction

would be to test each of the individual tests at a significance level of a/n, where n is the
number of tests.




Problem with isoforms

“Read assignment uncertainty” affects expression quantification accuracy
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Cufflinks

Isoform-expression methods

== I — - - |soform 1

- ] T Isoform 2

Likelihood of isoform 2
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DE testing with Cuffdiff

e Based on FPKM (Fragments per kb per million reads)

e Cuffdiff compares the log-ratio of gene's expression in two
conditions (a & b) against O

— Suppose we write the ratio of expression of a transcript "t" in
condition a versus condition b as

. FPKM,
~ FPKM,

-The test statistic T : -
T E[I{J;_-_[}’]I]
1-"'::1"[1{)3_"[}’]]]

— Tis approximately normally distributed and can be calculated as:

loo | ELEM,
p_ Elog(V)] o\ PR,
— [
Var[log( Y] [Var[FPK M.] | Va[FPRM,]
\/  FPEM? FPEM?




Cuffdiff vs count-based packages

Cuffdiff uses beta negative binomial to model
overdispersion and fragment assignment uncertainty simultaneously

*» Cuffdiff deals with problem of overdispersion across replicates
* Uses LOCFIT to fit a model for fragment count variances in each condition,
similar methods as Deseq.

* If only one replicate is available in each condition, Cuffdiff pools the

conditions together to derive a dispersion model

e Use the variances of fragment counts to calculate the variances on a gene's

relative expression level across replicates

* Use relative expression level variances for DE testing.




Cuffdiff vs count-based packages

Cuffdiff uses beta negative binomial to model
overdispersion and fragment assighment uncertainty simultaneously

*» Cuffdiff uses replicates to capture fragment assignment uncertainty

between alternative isoforms across replicates

* pools fragments from replicates and then examines the likelihood surface of

the replicate pool.

* estimated from the bootstrapping procedure to set the parameters of a beta

negative binomial distribution as the variance model




Differential analysis with Cuffdiff

Analyzing different groups of transcripts to identify differentially regulated genes

a .
Splicing structure of gene “X” HEIEW? abundance
of isoforms

TSSI[‘S _| cosi '
TSSIIEG_—*]DDS" B

b d f

Splicing preference Relative TSS use/ Relative CDS output
within TSS group promoter preference from gene
C
Differential Differential Differential protein
splicing promoter use output

PP @5 &G

Condition A Condition B Condition A  Condition B Condition A  Condition B

Trapnell et al., 2012 Nat. Protocol 7:562



Other important features in Cufflinks

 How does Cufflinks handle multi-mapped reads?

— uniformly divide each multi-mapped read to all of the positions it maps to.

— If multi-mapped read correction is enabled (-u/--multi-read-correct), Cufflinks will
improve its estimation by dividing each multi-mapped read probabalistically based on
the initial abundance estimation of the genes it maps to, the inferred fragment length,
and fragment bias (if bias correction is enabled).

 How does Cufflinks identify and correct for sequence bias?

— Sequence bias is usually caused by primers used either in PCR or reverse transcription, it
appears near the ends of the sequenced fragments.

— Cufflinks correct this bias by “learning” what sequences are being selected for (or
ignored) in a given experiment, and including these measurements in the abundance
estimation.

— Cufflinks will not bias correct reads mapping to transcripts with unknown strandedness.
— For more details, see http://cufflinks.cbcb.umd.edu/howitworks.html#hmul




Downstream data analysis

Functional analysis of DE genes

1. Function annotation: Gene Ontology (GO)

2. Function enrichment test for differential expressed gene set

3. Pathway mapping

4. Profiling clustering




Gene Ontology (GO)

* Describes properties of gene products in a
structured, standardized way

— Biological process
— Molecular function
— Cellular component

* Hierarchical: broader terms lead to more
specific terms

* Can be applied to any species
. www.geneontologv.org}




Fisher’s exact test
for functional enrichment of DE genes

Genes in category Genes not in category Sums
Differentially expressed genes E m-k m
Not differentially expressed genes n-k N-m-n+k N-m
Sums n N-n N

k: # of DE genes are in category
m: # of total DE genes

n: # of total genes in category

N: # of genes with valid data in your study




CBSU pipeline for RNA-seq data analysis

¢ The Tuxedo protocol
* TopHat
* Cufflinks
e Cuffmerge
*  Cuffdiff
* To compute FPKM and counts

e Use FPKM data for DE testing

CummeRbund

+» edgeR

e use count data for DE testing




The Tuxedo protocol

Coomdition A Condition B
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Final
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Expression
plois

Trapnell et al., 2012 Nat. Protocols 7:562.



Lab exercise:

Differential analysis without
gene and transcript discovery




Running Tophat

1. Reference Genome
« FASTA file

2. indexed by bowtie-build

e Genome Annotation
e  GFF or GTF files
e optional
3. Sequence data file
e FASTQ or FASTA




Using Tophat through Command line

1. Reformat and index the genome fasta file

bowtie-build maize.fa maize &

2. Do alignment (with or without annotation)

tophat —p 3 -0 s1_guided -G ZmB73 5a WGS.gtf --no-novel-juncs
maize s_1 sequence.txt &

tophat —p 3 -0 s1_unguided maize s 1 sequence.txt &

Manual: http://tophat.cbcb.umd.edu/manual.html




Tophat parameters

* Library type
— fr-unstranded : standard illumina

— fr-firststrand : strand specifid dUTP method
— fr-secondstrand : SOLID

e Novel junctions

— Default: novel junctions.

— Use --no-novel-juncs to turn it off




Tophat parameters

* For novel junctions
-i/--min-intron-length 70 bp
-I/--max-intron-length 500 kb
-a/--min-anchor-length 8 bp
-m/--splice-mismatches O




Tophat parameters

* Other parameters
-p : number of threads
-g : maximum number of hits
--report-secondary-alignments




Running Cuffdiff

Input files

e Tophat output (.bam) from multiple samples.

(biological duplicates should be defined as a single
comma-separated list)

e GTF/GFF3: gene annotation file




Cuffdiff Parameters

e Quantification or Assembly
-G: quantification only
-g: annotation guided assembly
-M: novel transcripts
* Library type
— fr-unstranded : standard illumina
— fr-firststrand : strand specifid dUTP method
— fr-secondstrand : SOLID




Running Cuffdiff

Output files

* Runinfo
* Read group info

* Read group tracking

— FPKM tracking files

— Count tracking files

* Differential expression files

Four attributes: genes, isoforms, tss_groups, and cds.




Computational Resource at Cornell

CBSU / 3CPG BioHPC Laboratory (625 Rhodes Hall)
Office Hour: 1:00 to 3:00 PM every Monday.

Email cbsu@cornell.edu to get an BioHPC lab account
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