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Overview 
• What is RNA-seq? 

• Why RNA-seq? 

• How to detect differential expression (DE) by 
RNA-seq? 
– Read Mapping 

– Summarization 

– Normalization 

– DE testing 

• CBSU RNA-seq analysis pipeline 
 



 
RNA-Seq: a revolutionary tool for transcriptomics 

 

Wang et al., 2009 Nature Review Genetics 10:57 



How RNA-seq was generated? 

Examples of NGS Instrumentation 

–  Roche 454 sequencer 

–  Illumina Genome Analyzer (Solexa sequencing) 

– Applied Biosystems SOLiD sequencer 



Illumina sequencing plateform  



Applications for RNA-seq Analysis 

• Transcripts quantification 

• Splicing sites discovery and quantification 

• Gene discovery 

• SNP/INDEL detection 

• Allele specific expression 



Overview 

Summarization 



Selected list of RNA-seq analysis programs 

Gaber  et al., 2011, Nature Methods 8:469 



Overview 

Summarization 



Strategies for gapped alignments of 
RNA-seq reads to the genome 

Example:  TopHat QPALMA 



Map reads with Tophat  



Limitation of Tophat 

 Two‐step approach 

• If a read can be mapped to the genome without splicing, it would 

not be evaluated for spliced mapping.  

• Can be corrected with “--read-realign-edit-dist” option 

 Canonical junctions only 

 • Reads < 75 bp, "GT‐AG" introns 

 • Reads >=75bp, "GT‐AG", "GC‐AG" and "AT‐AC“ introns 



Mapping with an aligner that allows for divergent reads 
  
 Stampy 

Maps single and paired Illumina reads to a reference 

genome/transcriptome 

 High sensitivity for indels and divergent reads, up to 10-15%  

 Input: Fastq and Fasta; gzipped or plain; SAM and BAM 

 Output: SAM, Maq's map file  

 



Visualization of read alignment with IGV 



SAM & BAM files  

• A SAM file (.sam) is a tab-delimited text file that contains sequence alignment 

data 

• A BAM file (.bam) is the binary version of a SAM file 

• SAMtools (http://en.wikipedia.org/wiki/SAMtools) 

– a set of utilities for interacting with and post-processing short DNA sequence read 

alignments in the SAM/BAM format 

– commands 

• view  filters SAM or BAM formatted data 

• sort  sorts a BAM file based on its position in the reference, as determined by its alignment 

• index  creates a new index file that allows fast look-up of data in a (sorted) SAM or BAM 

• tview  to visualize how reads are aligned to specified small regions of the reference genome 

(similar to IGV, but 
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Summarizing mapped reads into a gene level count 
 

Different summarization strategies will result in the inclusion or exclusion of different 
sets of reads in the table of counts. 



Transcriptome reconstruction methods 



Methods summarizing transcript set  



Two simplified gene models used for gene 
expression quantification 



Transcript abundance estimate using Cufflinks  
“Isoform-expression methods” 

 
 Trapnell et al., 2010 Nat. Tech. 28:511. 

• uses a statistical model in which the 
probability of observing each 
fragment is a linear function of the 
abundances of the transcripts from 
which it could have originated. 
 

• incorporates distribution of 
fragment lengths to help assign 
fragments to isoforms. 
 

• maximizes a function that assigns a 
likelihood to all possible sets of 
relative abundances 
 

• reports abundances that best 
explain the observed fragments 



Data QC 

1. Check basic statistics of alignment results 
– Total reads 

– % reads mapped/unmapped 

– % reads mapped to unique site 

– % reads mapped to multiple sites 

 

2. If the basic statistics looks good, check overall gene expression pattern 
among samples by clustering methods, such as MDS  or PC. 
– to identify potential “outliers” due to contamination or other tech problem. 

– to check potential sample mixed-up (for example, samples from biological replicates are 
expected  to be clustered with one another).  

– The clustering among samples may provide underlie biological explanations.  

 

 Software for RNA-seq QC  
- FastQC 

- RNA-SeQC 

- ShortRead 
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You have a list of counts, what next? 

Gene Condition A Condition B 

1 200 300 

2 15 30 

3 4000 4500 

: : : 



Factors affect RNA‐seq read counts 

1. Molar concentration of RNA molecules 

2. Length of RNA molecules 

3. Sequence‐specific bias  



Normalization for RNA-seq Data 

 
The Aim:  

To remove systematic technical effects in the data to 
ensure that technical bias has minimal impact on 
the results.  

 



Normalization methods 

 Total-count normalization 

• Low sensitivity in detecting DE, especially for low expressed genes 

 Upper-quantile (75%)  normalization 

• a small number of abundant, differentially expressed genes can create incorrect 
impression that less abundant genes are also differentially expressed 

• This issue can be mitigated by excluding these genes when normalizing expression 
values for the number of mapped reads in each sample.  

• use the number of reads mapping to the upper-quartile loci as normalization factor 

 Normalization by counts of stably expressed genes, such as 

housekeeping genes 

 Trimmed mean (TMM) normalization 

 

 

For more discussion on normalization, see: 

Bullard et al., 2010 Evaluation of statistical methods for normalization and differential 
expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94. 



Normalization for RNA-seq data 

Robinson & Oshlack 2010 Genome Biology 2010, 11:R25. 

Technical replicates 

Liver vs kidney       

smoothed distribution for logfold-changes  of 
housekeeping genes 

 

Normalized by total number of reads in each 
sample  



Normalization for RNA-seq data 
MA-plot 

Robinson & Oshlack 2010 Genome Biology 2010, 11:R25. 

Median log-ratio of the housekeeping genes 

Estimated TMM normalization factor 

 



Normalization using EDASeq package 

Risso, D. and Dudoit, S. (2011). EDASeq: Exploratory Data Analysis and Normalization for RNA-Seq. R package v 1.2.0 

Before 

After 

Gene-level count Overdispersion GC content 
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Statistic framework to detect DE genes 

• Which genes are being expressed at different levels in 

different conditions? 

• In statistical terms:  

– Do our measurements for the expression of a gene in different RNAseq 

experiments come from two different distributions or the same 

distribution?  



Hypothesis Testing 

H0:  The measurements come 
from the same distribution (i.e. 
the gene is being expressed at 

the same level across 
conditions.) 

 
A p-value that represents the 

probability of the null 
hypothesis is calculated. 

 



How to estimate variance (dispersion)  

Condition 1 Condition 2 

It is unrealistic to have more than a few RNA-seq replicates. 

We need to make some assumptions about dispersion. 



Model RNA-seq data under Poisson distribution 

RNA-seq  are counts --> counts follows Poisson distribution 

 

Number of occurrence (k) 

D
e

n
sity

 



Problem of overdispersion 



Generalized Linear Model (GLM) 



Generalized Linear Model (GLM) 



Overdisperssion problem 
  

 

Poisson 

Negative binomial (DESeq) 

Negative binomial (edgeR) 

Anders & Huber, 2010, Genome Biology 11: R106 



edgeR 
Robinson et al., 2009 

 Estimates the gene-wise dispersions by maximum likelihood, 

conditioning on the total count for that gene. 

 An empirical Bayes procedure is used to shrink the dispersions 

towards a consensus value, effectively borrowing information 

between genes.   

 Differential expression is assessed for each gene using Fisher's 

exact test. 





Multiple test correction 

• The problem of multiplicity: 
–  arises from the fact that as we increase the number of hypotheses in a test, we also 

increase the likelihood of witnessing a rare event, and therefore, the chance to reject 
the null hypotheses when it's true (type I error or False-positive). 

 

• Solution: Bonferroni correction 
– The most naive way to correct multiplicity 

– If the significance level for the whole family of tests is α, then the Bonferroni correction 
would be to test each of the individual tests at a significance level of α/n, where n is the 
number of tests.  



Problem with isoforms 
“Read assignment uncertainty” affects expression quantification accuracy 



Cufflinks 
Isoform-expression methods 



DE testing with Cuffdiff 

• Based on FPKM (Fragments per kb per million reads) 

• Cuffdiff compares the log-ratio of gene's expression in two 
conditions (a & b) against 0 
– Suppose we write the ratio of expression of a transcript "t" in 

condition a versus condition b as 

 

 

-The test statistic T : 

 

 
– T is approximately normally distributed and can be calculated as: 

 

 

 

 

 



Cuffdiff vs count-based packages 
 

Cuffdiff uses beta negative binomial to model  
overdispersion and fragment assignment uncertainty simultaneously 

 
 

 Cuffdiff deals with problem of overdispersion across replicates 

• Uses LOCFIT to fit a model for fragment count variances in each condition, 

similar methods as Deseq. 

• If only one replicate is available in each condition,  Cuffdiff pools the 

conditions together to derive a dispersion model 

• Use the variances of fragment counts to calculate the variances on a gene's 

relative expression level across replicates 

• Use relative expression level variances for DE testing. 



Cuffdiff vs count-based packages 
 

Cuffdiff uses beta negative binomial to model  
overdispersion and fragment assignment uncertainty simultaneously 

 

 
 Cuffdiff uses replicates to capture fragment assignment uncertainty 

between alternative isoforms across replicates 

• pools fragments from replicates and then examines the likelihood surface of 

the replicate pool. 

• estimated from the bootstrapping procedure to set the parameters of a beta 

negative binomial distribution as the variance model 

 



Differential analysis with Cuffdiff 
Analyzing different groups of transcripts to identify differentially regulated genes 

 
 Trapnell et al., 2012 Nat. Protocol 7:562 



Other important features in Cufflinks 

• How does Cufflinks handle multi-mapped reads? 
– uniformly divide each multi-mapped read to all of the positions it maps to. 

– If multi-mapped read correction is enabled (-u/--multi-read-correct), Cufflinks will 
improve its estimation by dividing each multi-mapped read probabalistically based on 
the initial abundance estimation of the genes it maps to, the inferred fragment length, 
and fragment bias (if bias correction is enabled). 

 

• How does Cufflinks identify and correct for sequence bias? 
– Sequence bias is usually caused by primers used either in PCR or reverse transcription, it 

appears near the ends of the sequenced fragments.  

– Cufflinks correct this bias by “learning” what sequences are being selected for (or 
ignored) in a given experiment, and including these measurements in the abundance 
estimation.  

– Cufflinks will not bias correct reads mapping to transcripts with unknown strandedness. 

– For more details, see http://cufflinks.cbcb.umd.edu/howitworks.html#hmul 



Downstream data analysis 

Functional analysis of DE genes 

1. Function annotation: Gene Ontology (GO) 

2. Function enrichment test for differential expressed gene set 

3. Pathway mapping 

4. Profiling clustering 

… 





Fisher’s exact test  
for functional enrichment of DE genes 



CBSU pipeline for RNA-seq data analysis 
 

 The Tuxedo protocol 

• TopHat 

• Cufflinks 

• Cuffmerge 

• Cuffdiff  

• To compute FPKM and counts 

• Use FPKM data for DE testing 

• CummeRbund 

 edgeR  

• use count data for DE testing  



The Tuxedo protocol  

Trapnell et al., 2012 Nat. Protocols 7:562.  



Lab exercise:  
Differential analysis without 

gene and transcript discovery 



Running Tophat 

1. Reference Genome  
• FASTA file 

2. indexed by bowtie‐build 
• Genome Annotation 

• GFF or GTF files 

• optional 

3. Sequence data file 
• FASTQ or FASTA 



Using Tophat through Command line 

1. Reformat and index the genome fasta file 

 

 
 

2. Do alignment (with or without annotation) 

Manual: http://tophat.cbcb.umd.edu/manual.html 



Tophat parameters 

• Library type 

 – fr‐unstranded : standard illumina 

 – fr‐firststrand : strand specifid dUTP method 

 – fr‐secondstrand : SOLiD 

• Novel junctions 

 – Default: novel junctions. 

  – Use ‐‐no‐novel‐juncs to turn it off 



Tophat parameters 

• For novel junctions 

 -i/‐‐min‐intron‐length 70 bp    

  -I/‐‐max‐intron‐length 500 kb 

 ‐a/-‐min‐anchor‐length 8 bp 

 -m/‐‐splice‐mismatches 0 



Tophat parameters 

• Other parameters 

 ‐p : number of threads 

 ‐g : maximum number of hits 

 --report-secondary-alignments 



Running Cuffdiff 

Input files 

 • Tophat output (.bam)  from multiple samples. 

 (biological duplicates should be defined as a single 
comma-separated list) 

 

  • GTF/GFF3: gene annotation file 

 



Cuffdiff Parameters 

• Quantification or Assembly 

 ‐G: quantification only 

 ‐g: annotation guided assembly 

 ‐M: novel transcripts 

• Library type 

 – fr‐unstranded : standard illumina 

 – fr‐firststrand : strand specifid dUTP method 

 – fr‐secondstrand : SOLiD 

 



Running Cuffdiff 

Output files 

• Run info 

• Read group info 

• Read group tracking 

– FPKM tracking files 

– Count tracking files 

• Differential expression files 
 

 

Four attributes: genes, isoforms, tss_groups, and cds. 
 



CBSU / 3CPG BioHPC Laboratory (625 Rhodes Hall) 

Office Hour: 1:00 to 3:00 PM every Monday. 

Email cbsu@cornell.edu to get an BioHPC lab account 

Computational Resource at Cornell 
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