

Cornell University Institute of Biotechnology Biotechnology Resource Center

> Workshop March 18, 2013

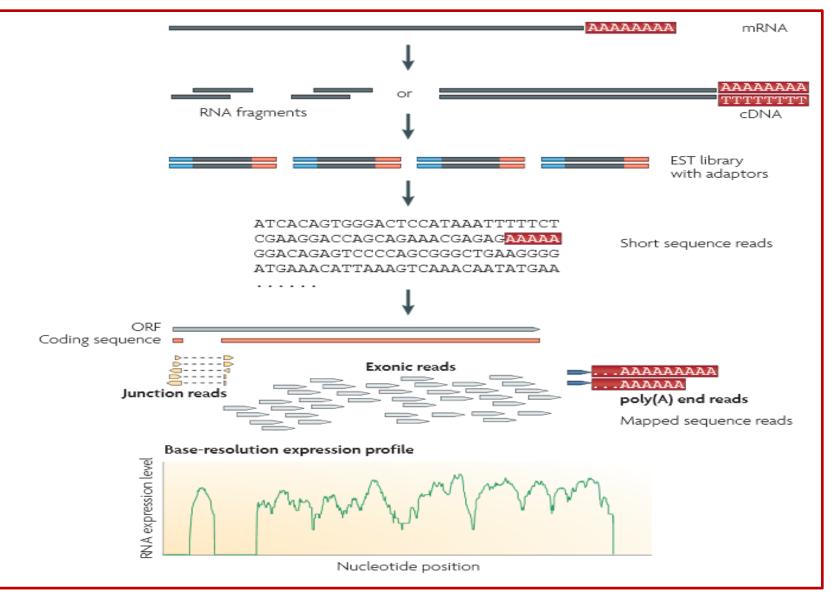
Reference Based RNA-Seq Data Analysis

Computational Biology Service Unit (CBSU) Hsiao-Pei Yang hy31@cornell.edu

Overview

- What is RNA-seq?
- Why RNA-seq?
- How to detect differential expression (DE) by RNA-seq?
 - Read Mapping
 - Summarization
 - Normalization
 - DE testing
- CBSU RNA-seq analysis pipeline

RNA-Seq: a revolutionary tool for transcriptomics

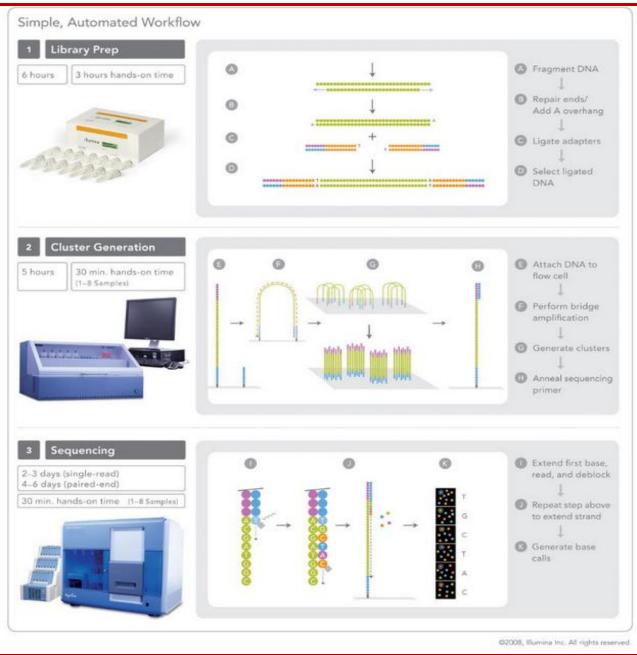


Wang et al., 2009 Nature Review Genetics 10:57

How RNA-seq was generated?

- **Examples of NGS Instrumentation**
 - Roche 454 sequencer
 - <u>Illumina Genome Analyzer (Solexa sequencing)</u>
 - Applied Biosystems SOLiD sequencer

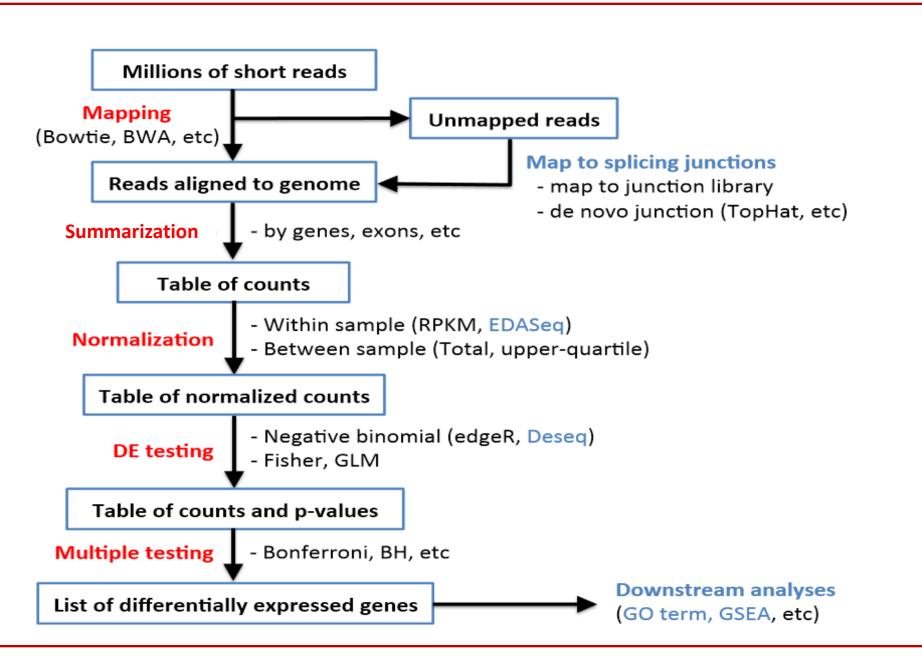
Illumina sequencing plateform



Applications for RNA-seq Analysis

- Transcripts quantification
- Splicing sites discovery and quantification
- Gene discovery
- SNP/INDEL detection
- Allele specific expression

Overview



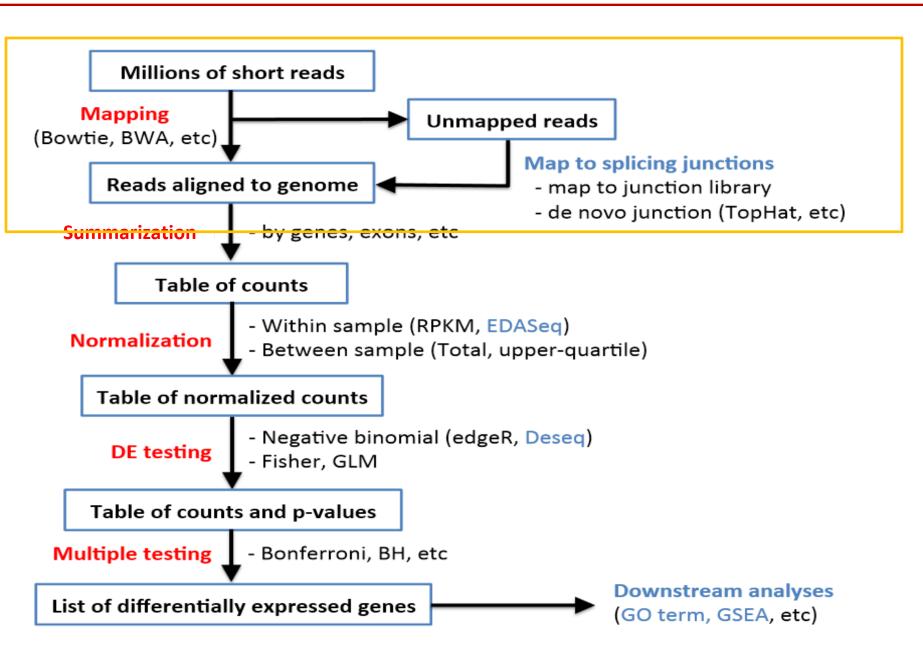
Selected list of RNA-seq analysis programs

Table 1 | Selected list of RNA-seq analysis programs Class Category Package Notes Uses Input Read mapping Seed methods Short-read mapping package Smith-Waterman extension Reads and reference Unspliced Aligning reads to a (SHRiMP)41 alignersa reference transcriptome transcriptome Stampy³⁹ Probabilistic model Bowtie⁴³ Burrows-Wheeler transform methods BWA44 Incorporates quality scores MapSplice⁵² Spliced aligners Exon-first methods Works with multiple unspliced Aligning reads to a Reads and reference aligners reference genome. Allows genome SpliceMap⁵⁰ for the identification of TopHat⁵¹ Uses Bowtie alignments novel splice junctions GSNAP⁵³ Seed-extend methods Can use SNP databases OPALMA⁵⁴ Smith-Waterman for large gaps Transcriptome reconstruction Genome-quided Exon identification G.Mor.Se Assembles exons Identifying novel transcripts Alignments to using a known reference reconstruction Scripture²⁸ reference genome Genome-auided Reports all isoforms genome assembly Cufflinks²⁹ Reports a minimal set of isoforms Velvet⁶¹ Genome-independent Reports all isoforms Identifying novel genes and Reads Genomeindependent assembly transcript isoforms without TransABySS⁵⁶ reconstruction a known reference genome Expression quantification Gene quantification Alexa-seq⁴⁷ Quantifies using differentially Expression Quantifying gene expression Reads and transcript quantification included exons models Enhanced read analysis of Quantifies using union of exons gene expression (ERANGE)²⁰ Normalization by expected Quantifies using unique reads uniquely mappable area (NEUMA)82 Isoform quantification Cufflinks²⁹ Maximum likelihood estimation of Quantifying transcript Read alignments to relative isoform expression isoform expression levels isoforms MISO³³ RNA-seq by expectaion maximization (RSEM)69 Cuffdiff²⁹ Differential Uses isoform levels in analysis Identifying differentially Read alignments expression expressed genes or and transcript DeqSeq⁷⁹ Uses a normal distribution transcript isoforms models EdgeR77 Differential Expression analysis of count data (DESeq)⁷⁸ Mvrna⁷⁵ Cloud-based permutation method

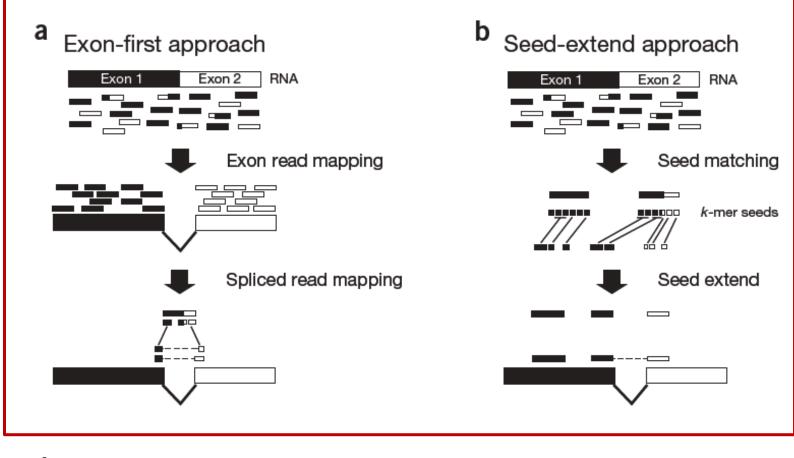
^aThis list is not meant to be exhaustive as many different programs are available for short-read alignment. Here we chose a representative set capturing the frequently used tools for RNA-seq or tools representing fundamentally different approaches.

Gaber et al., 2011, Nature Methods 8:469

Overview



Strategies for gapped alignments of RNA-seq reads to the genome

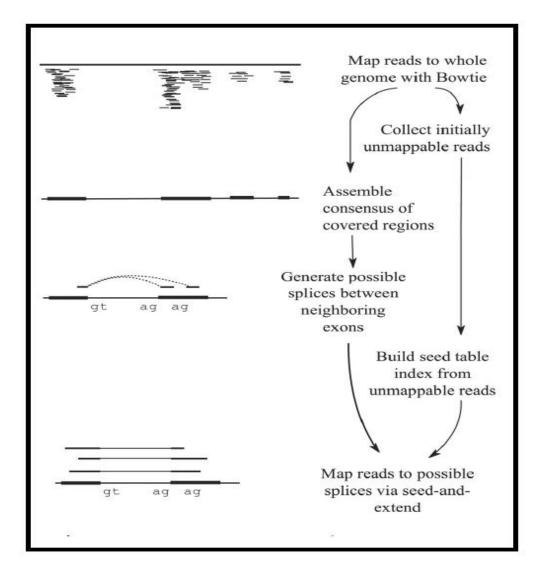


Example:

TopHat

QPALMA

Map reads with Tophat



Trapnell C et al. Bioinformatics 2009;25:1105-1111

Limitation of Tophat

Two-step approach

- If a read can be mapped to the genome without splicing, it would not be evaluated for spliced mapping.
- Can be corrected with "--read-realign-edit-dist" option
- Canonical junctions only
 - Reads < 75 bp, "GT-AG" introns
 - Reads >=75bp, "GT-AG", "GC-AG" and "AT-AC" introns

Mapping with an aligner that allows for divergent reads

Stampy

Maps single and paired Illumina reads to a reference

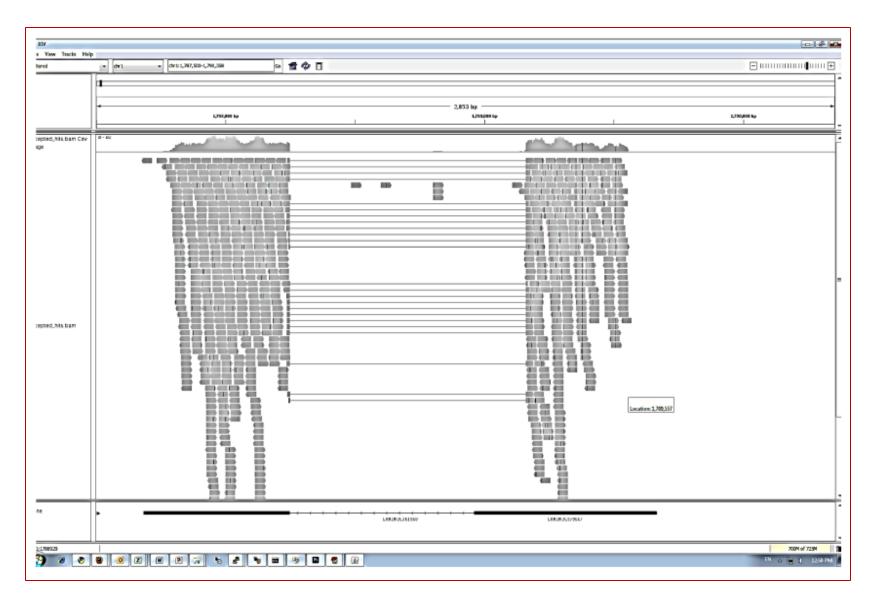
genome/transcriptome

High sensitivity for indels and divergent reads, up to 10-15%

Input: Fastq and Fasta; gzipped or plain; SAM and BAM

Output: SAM, Maq's map file

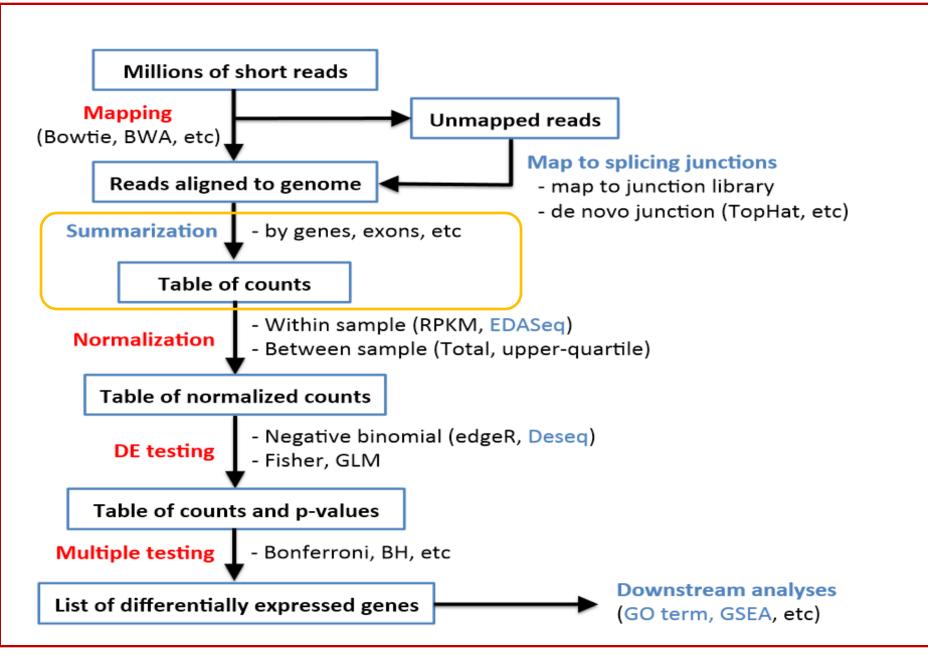
Visualization of read alignment with IGV



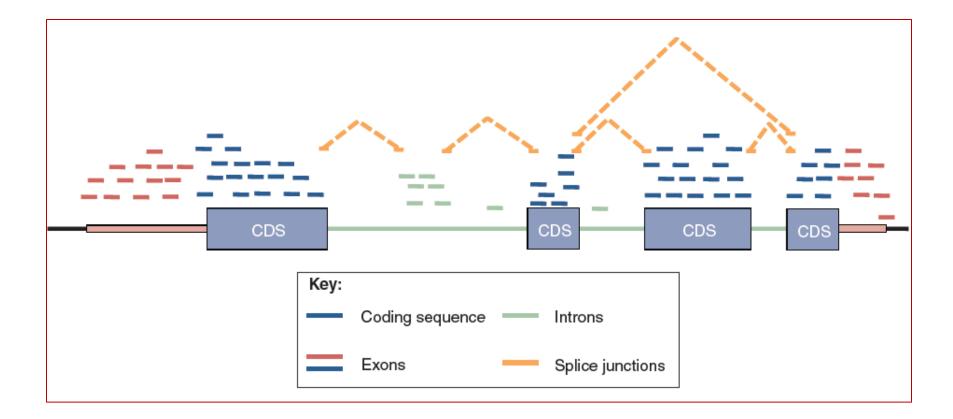
SAM & BAM files

- A SAM file (.sam) is a tab-delimited text file that contains sequence alignment data
- A BAM file (.bam) is the binary version of a SAM file
- **SAMtools** (http://en.wikipedia.org/wiki/SAMtools)
 - a set of utilities for interacting with and post-processing short DNA sequence read alignments in the SAM/BAM format
 - commands
 - view filters SAM or BAM formatted data
 - *sort* sorts a BAM file based on its position in the reference, as determined by its alignment
 - *index* creates a new index file that allows fast look-up of data in a (sorted) SAM or BAM
 - tview to visualize how reads are aligned to specified small regions of the reference genome (similar to IGV, but

Overview

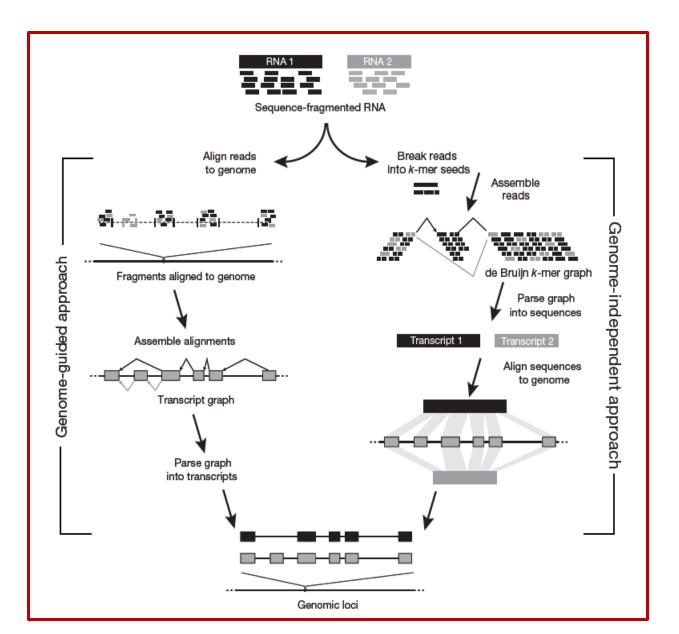


Summarizing mapped reads into a gene level count

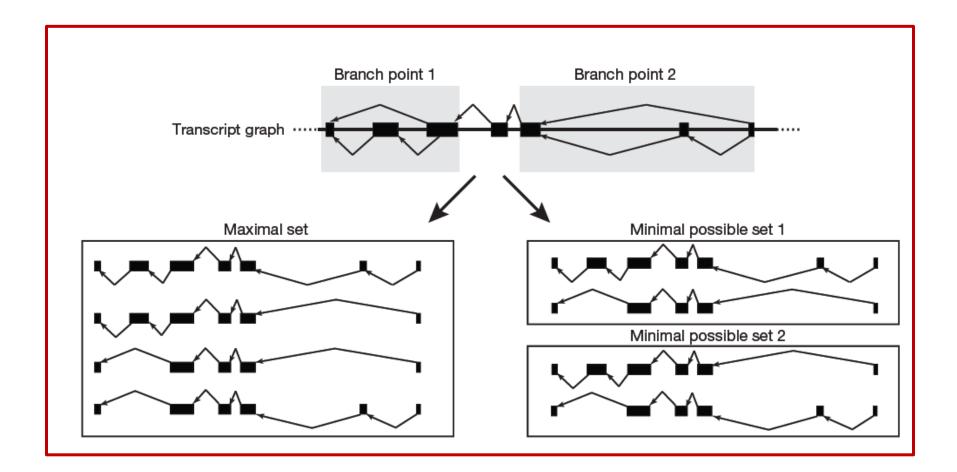


Different summarization strategies will result in the inclusion or exclusion of different sets of reads in the table of counts.

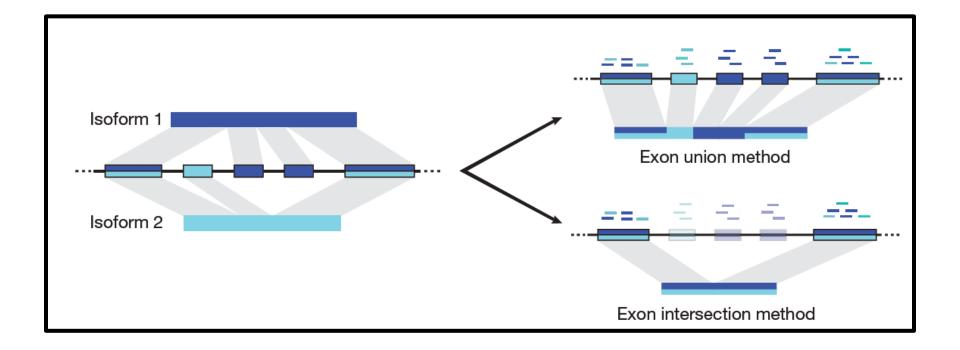
Transcriptome reconstruction methods



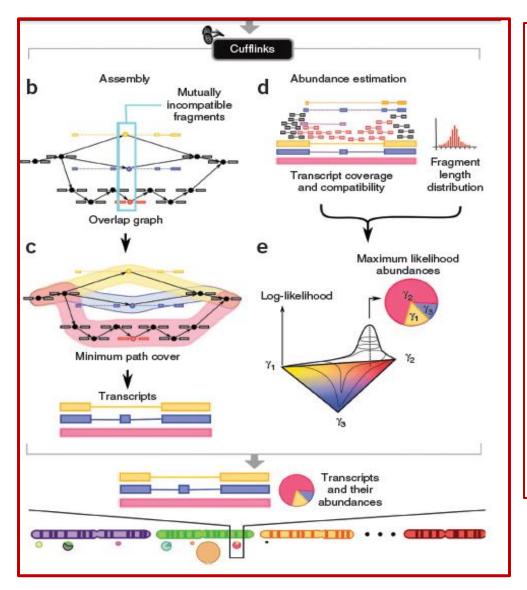
Methods summarizing transcript set



Two simplified gene models used for gene expression quantification



Transcript abundance estimate using Cufflinks "Isoform-expression methods"



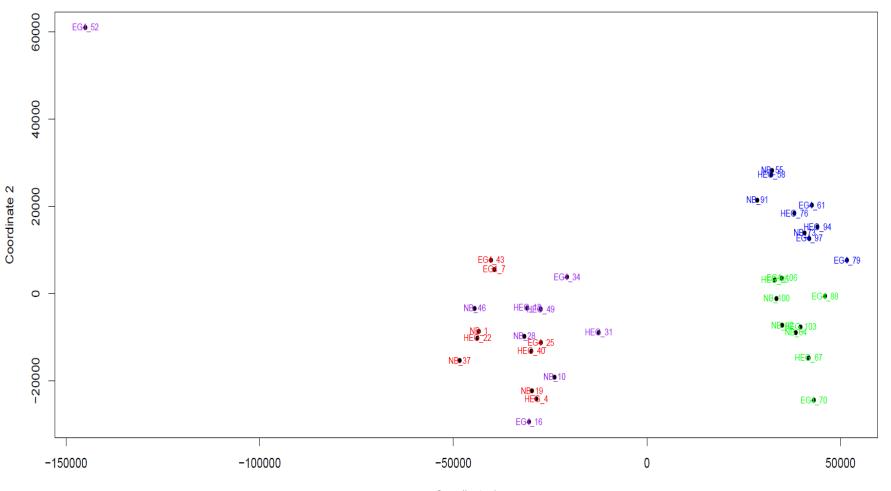
- uses a statistical model in which the probability of observing each fragment is a linear function of the abundances of the transcripts from which it could have originated.
- incorporates distribution of fragment lengths to help assign fragments to isoforms.
- maximizes a function that assigns a likelihood to all possible sets of relative abundances
- reports abundances that best explain the observed fragments

Trapnell et al., 2010 Nat. Tech. 28:511.

Data QC

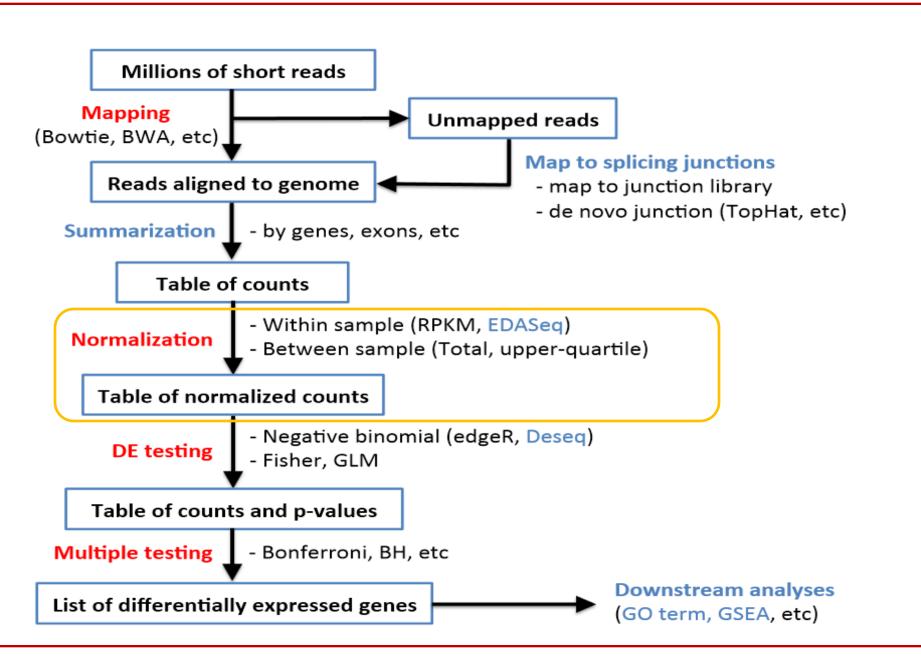
- 1. Check basic statistics of alignment results
 - Total reads
 - % reads mapped/unmapped
 - % reads mapped to unique site
 - % reads mapped to multiple sites
- 2. If the basic statistics looks good, check overall gene expression pattern among samples by clustering methods, such as MDS or PC.
 - to identify potential "outliers" due to contamination or other tech problem.
 - to check potential sample mixed-up (for example, samples from biological replicates are expected to be clustered with one another).
 - The clustering among samples may provide underlie biological explanations.
- Software for RNA-seq QC
 - FastQC
 - RNA-SeQC
 - ShortRead

Metric MDS for Cold-treated vs Controlled Rice Samples



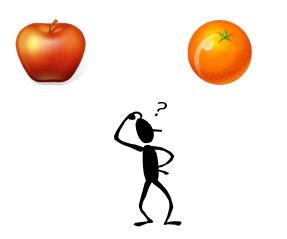
Coordinate 1 Cold-treated: hour1 in blue, hour3 in green; Controlled: hour1 in red, hour3 in purple

Overview



You have a list of counts, what next?

Gene	Condition A	Condition B
1	200	300
2	15	30
3	4000	4500
:	:	:

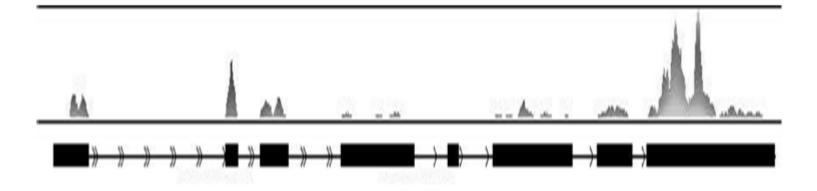


Factors affect RNA-seq read counts

1. Molar concentration of RNA molecules

2. Length of RNA molecules

3. Sequence-specific bias



Normalization for RNA-seq Data

The Aim:

To remove systematic technical effects in the data to ensure that technical bias has minimal impact on the results.

Normalization methods

Total-count normalization

• Low sensitivity in detecting DE, especially for low expressed genes

Upper-quantile (75%) normalization

- a small number of abundant, differentially expressed genes can create incorrect impression that less abundant genes are also differentially expressed
- This issue can be mitigated by excluding these genes when normalizing expression values for the number of mapped reads in each sample.
- use the number of reads mapping to the upper-quartile loci as normalization factor

Normalization by counts of stably expressed genes, such as

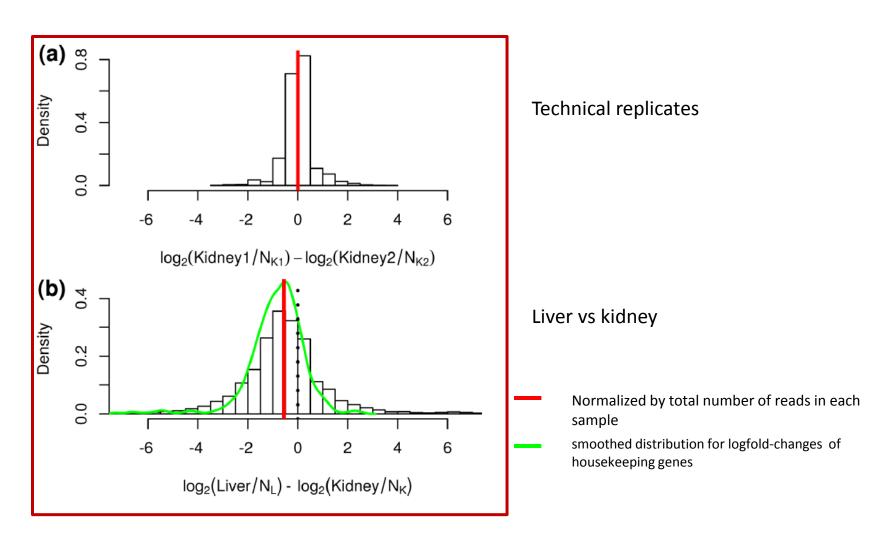
housekeeping genes

Trimmed mean (TMM) normalization

For more discussion on normalization, see:

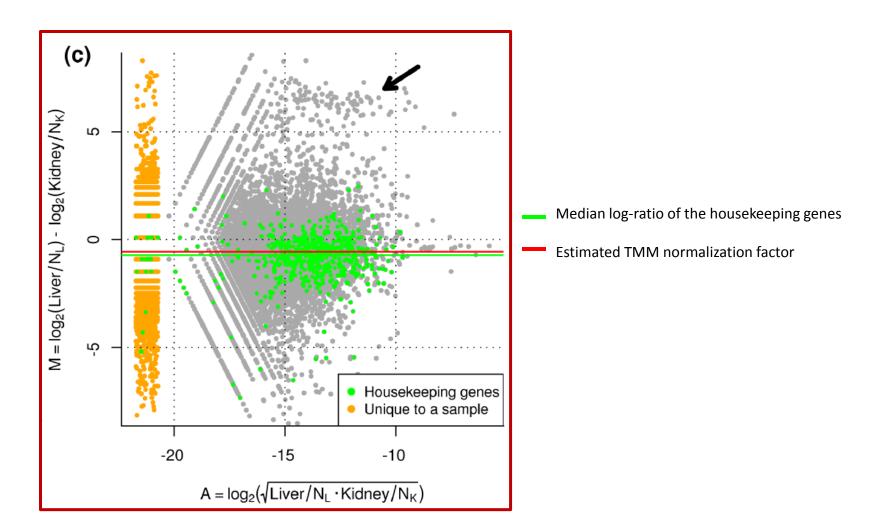
Bullard *et al.*, 2010 Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94.

Normalization for RNA-seq data

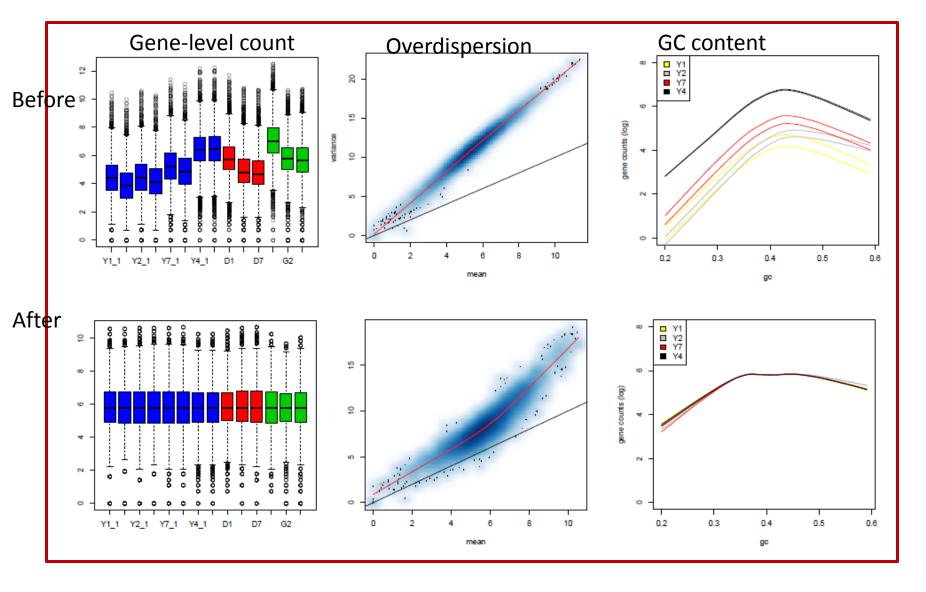


Robinson & Oshlack 2010 Genome Biology 2010, 11:R25.

Normalization for RNA-seq data MA-plot

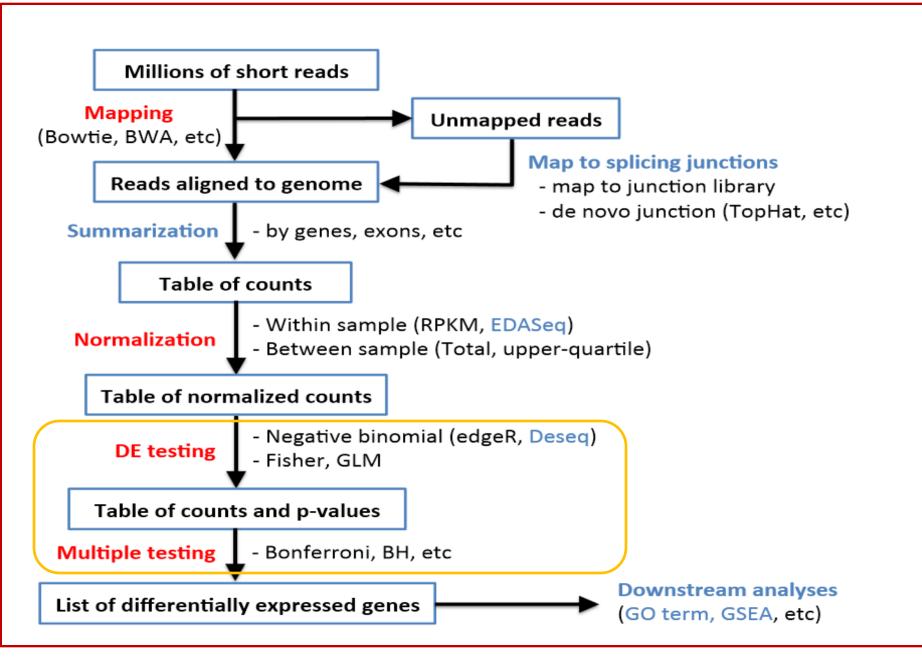


Normalization using EDASeq package



Risso, D. and Dudoit, S. (2011). EDASeq: Exploratory Data Analysis and Normalization for RNA-Seq. R package v 1.2.0

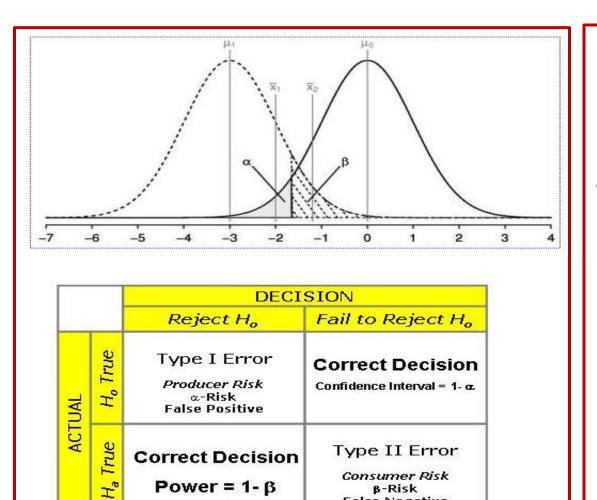
Overview



Statistic framework to detect DE genes

- Which genes are being expressed at different levels in different conditions?
- In statistical terms:
 - Do our measurements for the expression of a gene in different RNAseq experiments come from two different distributions or the same distribution?

Hypothesis Testing



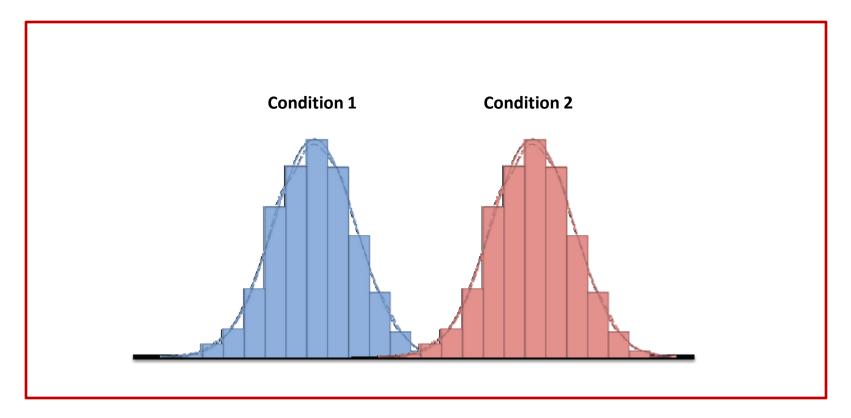
H₀: The measurements come from the same distribution (i.e. the gene is being expressed at the same level across conditions.)

A p-value that represents the probability of the null hypothesis is calculated.

Ho: Null Hypothesis Ha: Alternative Hypothesis

False Negative

How to estimate variance (dispersion)

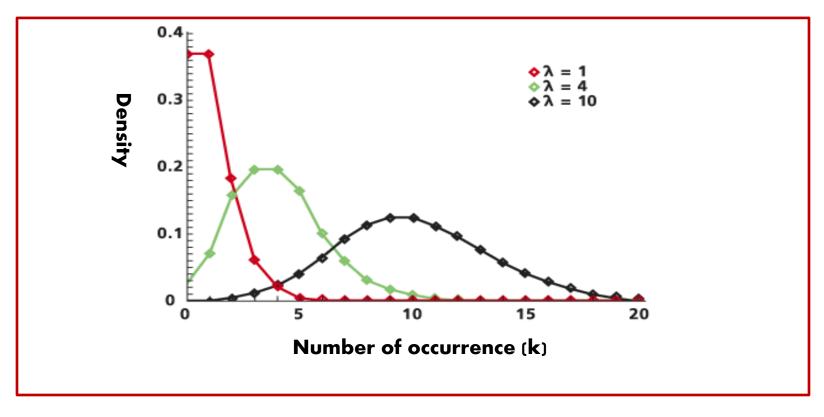


It is unrealistic to have more than a few RNA-seq replicates.

We need to make some assumptions about dispersion.

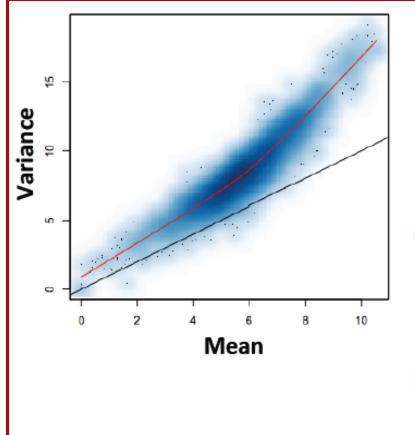
Model RNA-seq data under Poisson distribution

RNA-seq are counts --> counts follows Poisson distribution



$$f(k;\lambda) = \Pr(X = k) = \frac{\lambda^k e^{-\lambda}}{k!},$$
$$\lambda = \operatorname{E}(X) = \operatorname{Var}(X).$$

Problem of overdispersion



Source of variation:

- Biological variation
- Technical variation from library prep
- GC bias, transcript length bias
- Flowcell effect

etc

Generalized linear model (GLM) allows incorporation of known additional variations

Negative binomial

models unexplained variance as

Variance = Mean + ϕ Mean²

Generalized Linear Model (GLM)

- Linear regression that allows distributions such as Poisson
- Can incorporate replicates and other variables

	Untreated				Treated			
Gene	Lib Prep 1		Lib Prep 2		Lib Prep 1		Lib Prep 2	
	FC1	FC2	FC1	FC2	FC1	FC2	FC1	FC2
Gene 1	95	105	110	83	313	301	325	295
Gene 2	10	7	12	5	19	18	24	20
Gene 3	4930	4990	5050	4850	4549	4529	4869	4497
:	:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:	:
Total	10M	11M	11M	8M	10M	9M	12M	10M

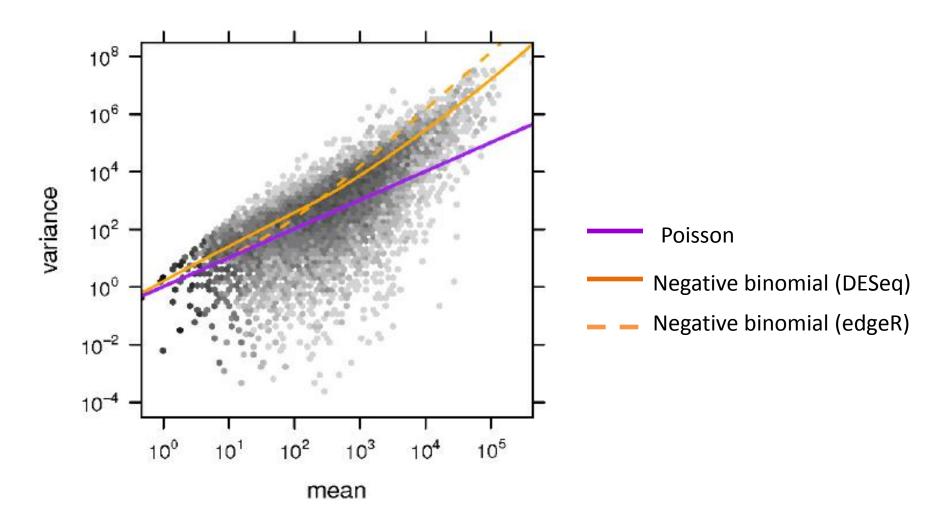
log(Counts) ~ Treatment + Lib_Prep + Flowcell

Generalized Linear Model (GLM)

log(Counts) ~ log(Total) + Treatment + Lib_Prep + Flowcell
Design matrix

Treatment	Lib_Prep	Flowcell	Count	Total reads
1	1	1	95	10
1	1	2	105	11
1	2	1	110	11
1	2	2	83	8
2	1	1	313	10
2	1	2	301	9
2	2	1	325	12
2	2	2	295	10

Overdisperssion problem



Anders & Huber, 2010, Genome Biology 11: R106

edgeR

Robinson et al., 2009

Estimates the gene-wise dispersions by maximum likelihood, conditioning on the total count for that gene.

An empirical Bayes procedure is used to shrink the dispersions towards a consensus value, effectively borrowing information between genes.

Differential expression is assessed for each gene using Fisher's exact test.

Fisher's exact test

- Very easy to use

- Used with 2x2 contingency table

- Based on hypergeometric distribution

Untreated	Treated	Total
100	250	350
9,999,900	12,999,750	24,999,650
10M	13M	25M
	100 9,999,900	100 250 9,999,900 12,999,750

Multiple test correction

• The problem of multiplicity:

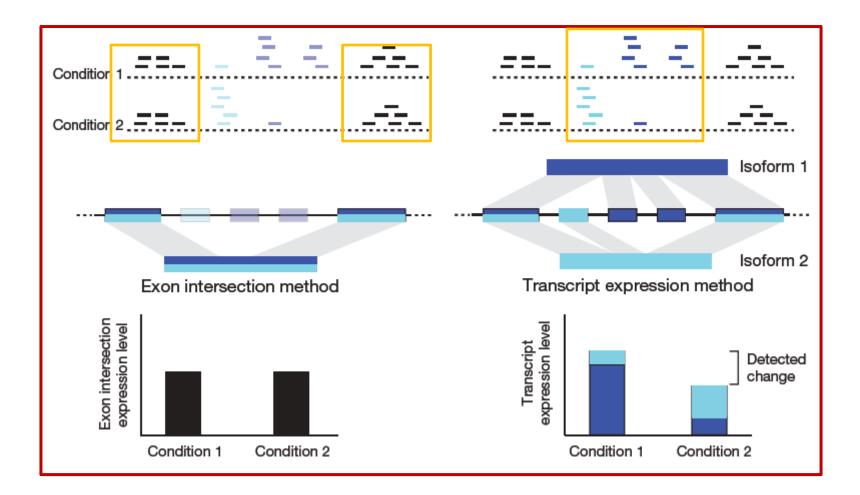
 arises from the fact that as we increase the number of hypotheses in a test, we also increase the likelihood of witnessing a rare event, and therefore, the chance to reject the null hypotheses when it's true (type I error or False-positive).

• Solution: Bonferroni correction

- The most naive way to correct multiplicity
- If the significance level for the whole family of tests is α , then the Bonferroni correction would be to test each of the individual tests at a significance level of α/n , where *n* is the number of tests.

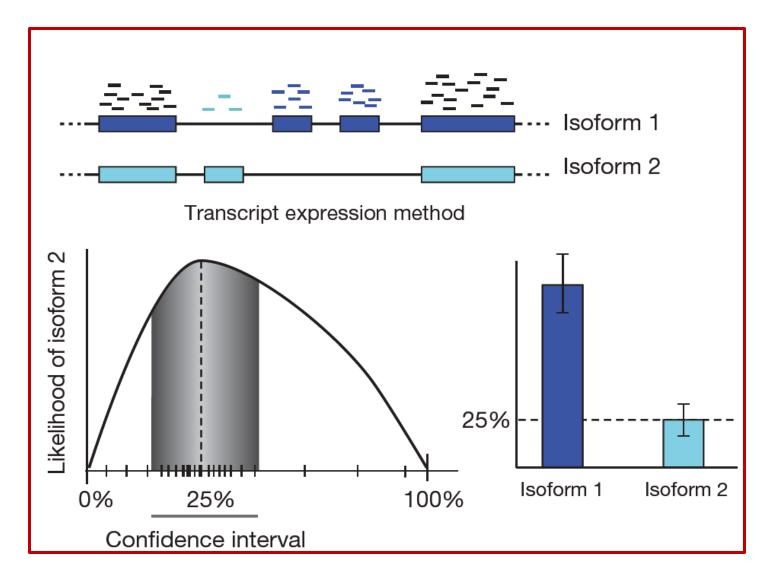
Problem with isoforms

"Read assignment uncertainty" affects expression quantification accuracy



Cufflinks

Isoform-expression methods



DE testing with Cuffdiff

- Based on FPKM (Fragments per kb per million reads)
- Cuffdiff compares the log-ratio of gene's expression in two conditions (a & b) against 0
 - Suppose we write the ratio of expression of a transcript "t" in condition a versus condition b as

$$Y = \frac{FPKM_a}{FPKM_b}$$

$$T = \frac{E[\log(Y)]}{Var[\log(Y))]}$$

T is approximately normally distributed and can be calculated as:

$$T = \frac{E[\log(Y)]}{\operatorname{Var}[\log(Y)]} \approx \frac{\log\left(\frac{FPKM_a}{FPKM_b}\right)}{\sqrt{\frac{\operatorname{Var}[FPKM_a]}{FPKM_a^2} + \frac{\operatorname{Var}[FPKM_b]}{FPKM_b^2}}}$$

Cuffdiff vs count-based packages

Cuffdiff uses **beta negative binomial** to model **overdispersion** and **fragment assignment uncertainty** simultaneously

Cuffdiff deals with problem of overdispersion across replicates

- Uses LOCFIT to fit a model for fragment count variances in each condition, similar methods as Deseq.
- If only one replicate is available in each condition, Cuffdiff pools the conditions together to derive a dispersion model
- Use the variances of fragment *counts* to calculate the variances on a gene's relative expression level across replicates
- Use relative expression level variances for DE testing.

Cuffdiff vs count-based packages

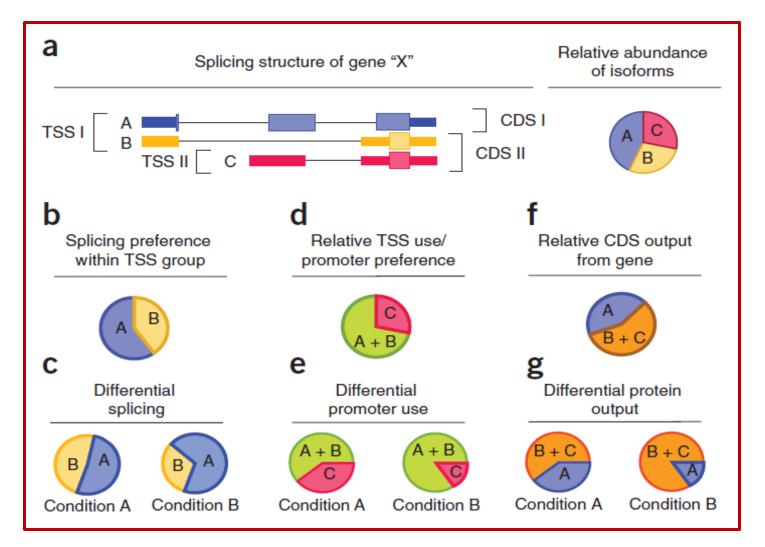
Cuffdiff uses **beta negative binomial** to model **overdispersion** and **fragment assignment uncertainty** simultaneously

 Cuffdiff uses replicates to capture fragment assignment uncertainty between alternative isoforms across replicates

- pools fragments from replicates and then examines the likelihood surface of the replicate pool.
- estimated from the bootstrapping procedure to set the parameters of a beta negative binomial distribution as the variance model

Differential analysis with Cuffdiff

Analyzing different groups of transcripts to identify differentially regulated genes



Trapnell et al., 2012 Nat. Protocol 7:562

Other important features in Cufflinks

- How does Cufflinks handle multi-mapped reads?
 - uniformly divide each multi-mapped read to all of the positions it maps to.
 - If multi-mapped read correction is enabled (-u/--multi-read-correct), Cufflinks will improve its estimation by dividing each multi-mapped read probabalistically based on the initial abundance estimation of the genes it maps to, the inferred fragment length, and fragment bias (if bias correction is enabled).
- How does Cufflinks identify and correct for sequence bias?
 - Sequence bias is usually caused by primers used either in PCR or reverse transcription, it appears near the ends of the sequenced fragments.
 - Cufflinks correct this bias by "learning" what sequences are being selected for (or ignored) in a given experiment, and including these measurements in the abundance estimation.
 - Cufflinks will <u>not</u> bias correct reads mapping to transcripts with unknown strandedness.
 - For more details, see http://cufflinks.cbcb.umd.edu/howitworks.html#hmul

Downstream data analysis

Functional analysis of DE genes

- 1. Function annotation: Gene Ontology (GO)
- 2. Function enrichment test for differential expressed gene set
- 3. Pathway mapping
- 4. Profiling clustering

. . .

Gene Ontology (GO)

- Describes properties of gene products in a structured, standardized way
 - Biological process
 - Molecular function
 - Cellular component
- Hierarchical: broader terms lead to more specific terms
- Can be applied to any species
- www.geneontology.org

Fisher's exact test for functional enrichment of DE genes

	Genes in category	Genes not in category	Sums
Differentially expressed genes	<u>k</u>	m-k	<u>m</u>
Not differentially expressed genes	n-k	N-m-n+k	N-m
Sums	<u>n</u>	N-n	N

- k: # of DE genes are in category
- m: # of total DE genes
- n: # of total genes in category
- N: # of genes with valid data in your study

CBSU pipeline for RNA-seq data analysis

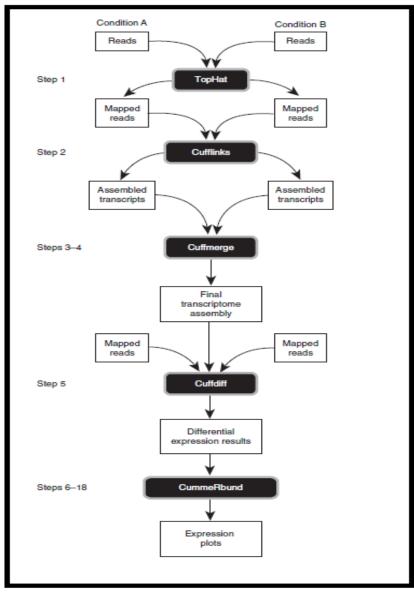
The Tuxedo protocol

- <u>TopHat</u>
- Cufflinks
- Cuffmerge
- <u>Cuffdiff</u>
 - To compute FPKM and counts
 - Use FPKM data for DE testing
- <u>CummeRbund</u>

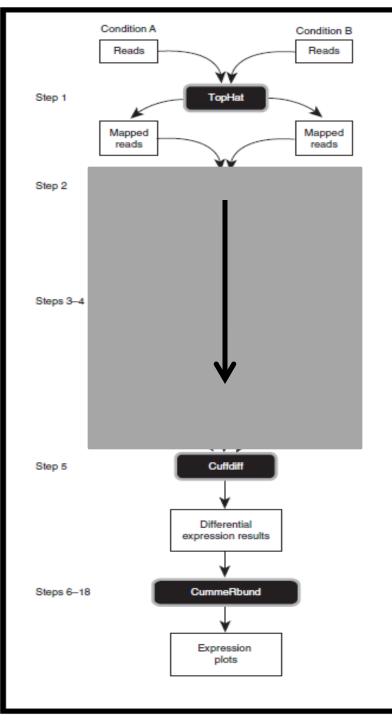
💠 <u>edgeR</u>

use count data for DE testing

The Tuxedo protocol



Trapnell et al., 2012 Nat. Protocols 7:562.



Lab exercise:

Differential analysis without gene and transcript discovery

Running Tophat

1. Reference Genome

• FASTA file

2. indexed by bowtie-build

- Genome Annotation
- GFF or GTF files
- optional
- 3. Sequence data file
 - FASTQ or FASTA

Using Tophat through Command line

1. Reformat and index the genome fasta file

bowtie-build maize.fa maize &

2. Do alignment (with or without annotation)

tophat -p 3 -o s1_guided -G ZmB73_5a_WGS.gtf --no-novel-juncs maize s_1_sequence.txt &

tophat -p 3 -o s1_unguided maize s_1_sequence.txt &

Manual: http://tophat.cbcb.umd.edu/manual.html

Tophat parameters

Library type

- fr-unstranded : standard illumina
- fr-firststrand : strand specifid dUTP method
- fr-secondstrand : SOLiD

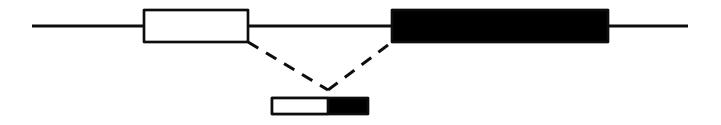
Novel junctions

- Default: novel junctions.
- Use --no-novel-juncs to turn it off

Tophat parameters

For novel junctions

-i/--min-intron-length 70 bp
-l/--max-intron-length 500 kb
-a/--min-anchor-length 8 bp
-m/--splice-mismatches 0



Tophat parameters

Other parameters

-p: number of threads

-g : maximum number of hits

--report-secondary-alignments

Running Cuffdiff

Input files

• Tophat output (.bam) from multiple samples.

(biological duplicates should be defined as a single **comma-separated** list)

• GTF/GFF3: gene annotation file

Cuffdiff Parameters

Quantification or Assembly

- -G: quantification only
- -g: annotation guided assembly
- -M: novel transcripts
- Library type
 - fr-unstranded : standard illumina
 - fr-firststrand : strand specifid dUTP method
 - fr-secondstrand : SOLiD

Running Cuffdiff

Output files

- Run info
- Read group info
- Read group tracking
 - FPKM tracking files
 - Count tracking files
- Differential expression files

Four attributes: genes, isoforms, tss_groups, and cds.

Computational Resource at Cornell

CBSU / 3CPG BioHPC Laboratory (625 Rhodes Hall) Office Hour: 1:00 to 3:00 PM every Monday.

Email <u>cbsu@cornell.edu</u> to get an BioHPC lab account

References

- Oshlack *et al.* 2010 From RNA-seq reads to differential expression results. *Genome Biology* 11:220.
- Garber *et al.*, 2011 Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods 8:469
- Trapnell *et al.*, 2012 Differential gene and transcript expression analysis of RNAseq experiments with TopHat and Cufflinks. Nat. Protocols 7:562.
- Robinson & Oshlack 2010 A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 2010, 11:R25.
- Bullard *et al.*, 2010 Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010, 11:94.
- Robinson *et al.*, 2010 edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139.
- Anders & Huber 2010 Differential expression analysis for sequence count data. Genome Biol. 11:R106.