
1 
 

TASSEL 3.0 Genotyping by Sequencing (GBS) pipeline documentation 
 
Authors:  Jeff Glaubitz, James Harriman, Terry Casstevens 
 
Acknowledgements:  Many thanks to Genevieve DeClerk and Charles Chen for excellent suggestions for 
improving this documentation.  They are not to be blamed for its many remaining deficiencies, however. 
 
Please note that this is an unfinished work in progress… 

Table of Contents 

Introduction ............................................................................................................................................................. 1 
Recommended directory (folder) structure for a GBS analysis............................................................................... 2 
QseqToTagCountPlugin........................................................................................................................................... 2 
MergeMultipleTagCountPlugin ............................................................................................................................... 4 
SAMConverterPlugin .............................................................................................................................................. 5 
QseqToTBTPlugin ................................................................................................................................................... 5 
MergeTagsByTaxaFilesPlugin ................................................................................................................................. 7 
TagsToSNPByAlignmentMTPlugin ........................................................................................................................ 7 
MergeDuplicateSNPsPlugin .................................................................................................................................... 9 
GBSHapMapFiltersPlugin ..................................................................................................................................... 10 
BiParentalErrorCorrectionPlugin .......................................................................................................................... 11 
MergeIdenticalTaxaPlugin ..................................................................................................................................... 12 
BinaryToTextPlugin............................................................................................................................................... 12 
TextToBinaryPlugin............................................................................................................................................... 13 
Appendix 1:  Key file example .............................................................................................................................. 13 
 
 

Introduction 
 
The GBS analysis pipeline is an extension to the Java program TASSEL, and, as such, GBS commands are run as 
TASSEL plugins via the command line in the following format (Linux or Mac operating system; for Windows use 
run_pipeline.bat): 
 

run_pipeline.pl -fork1 -PluginName --plugin-option -endPlugin -runfork1 
 
Each step of the pipeline is specified with a "fork" command and a number, since TASSEL can run several 
processes at once, and split and recombine their results. The fork option is followed by the name of the plugin, 
and any plugin-specific options. If no plugin options are provided, the program will print a list of available 
options. -endPlugin signals the end of plugin-specific options, and -runfork1 then runs the specified plugin. In all 
of our examples here for the GBS pipeline, we run only a single fork at a time. 
 
Please see http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf for general instructions on how to 
install the TASSEL 3.0 Standalone Build on your computer.  These GBS-specific instructions assume that you 
have unzipped the standalone into the directory (folder) 

/programs 
and then renamed the directory  

/programs/tassel3.0_standalone 
to 

/programs/tassel 

http://www.maizegenetics.net/tassel/docs/TasselPipelineCLI.pdf


2 
 

If not, you will have to edit the example commands appropriately (e.g., replace “tassel” with 
“tassel3.0_standalone”). 
 
If you have more memory available on your machine than 1.5GB, then you can increase the amount of memory 
available to TASSEL by opening run_pipeline.pl (or run_pipeline.bat) in a text editor and 
modifying “-Xms512m -Xmx1536m” to (for example) “-Xms512m –Xmx4096m” (the –Xmx option controls 
the maximum memory allocation). 
 
Note that many of the GBS commands (“plugins”) produce a large amount of (poorly formatted) console output 
(“stdout”) that is not discussed below (at least not in this incomplete draft).  Much of this output is very 
informative, so you will likely find it helpful to either copy and paste it to a text log file or redirect stdout to both 
the console and a log file (e.g., using  ‘| tee GBSlogfile20110915.txt’  in Linux).  Alternatively, if you 
are working in a Linux Bash shell you can start a new shell with the command  ‘bash | tee -a 
logfile.txt’.  All of your keystrokes along with the console output to this new shell should then be appended 
(-a option) to the logfile.txt (rename the file as you see fit). 
 
The next version of this documentation will include a flow chart showing how the steps of the analysis link 
together. 
 
A more concise, less detailed example of running the pipeline is available in this tutorial: 
http://cbsu.tc.cornell.edu/lab/doc/gbs_pipeline_workshop_walkthrough.pdf. 

Recommended directory (folder) structure for a GBS analysis 
 
A dot (.) will represent the working directory (folder) for your analysis, which will be your current working 
directory  (e.g., /home/myUserName/myGBSstudyName) 
 
The example commands below don’t create the directories (and will fail if they don’t already exist), so at the start 
of the analysis, create the following directories inside your working directory. 
 
./qseq OR ./fastq   (original raw data files, one file per flowcell lane) 
./tagCounts  (for output from QseqToTagCountPlugin OR FastqToTagCountPlugin) 
./topm              (for output from SAMConverterPlugin) 
./mergedTagCounts   (for output from MergeMultipleTagCountPlugin) 
./tbt               (for output from QseqToTBTPlugin OR FastqToTBTPlugin) 
./mergedTBT         (for output from MergeTagsByTaxaFilesPlugin) 
./hapmap 
./hapmap/unfilt     (for output from TagsToSNPByAlignmentMTPlugin) 
./hapmap/mergedSNPs (for output from MergeDuplicateSNPsPlugin) 
./hapmap/filt       (for output from GBSHapMapFiltersPlugin) 

QseqToTagCountPlugin 

Summary: 
Derives a tagCount list for each qseq file in the input directory (and all subdirectories thereof).  Keeps only good 
reads having a barcode and a cut site and no N's in the useful part of the sequence.  Trims off the barcodes and 
truncates sequences that (1) have a second cut site, or (2) read into the common adapter.  If your input files are 
in fastq format (and qseq files are not available), use FastqToTagCountPlugin instead (same arguments). 

Input: 
• Barcode key file (see example in Appendix 1) 

http://cbsu.tc.cornell.edu/lab/doc/gbs_pipeline_workshop_walkthrough.pdf


3 
 

• Directory (folder) containing qseq files 

Output: 
• Directory (folder) containing a corresponding tagCount (*.cnt) file for every qseq file in the input 

directory 

Arguments: 
QseqToTagCountPlugin  

-i Input directory containing .qseq text or gzipped text files.  NOTE: Directory will 
be searched recursively, and should be written without a slash after its name. 

-k Key file listing barcodes for each sample. 
-e Enzyme used to create the GBS library (ApeKI or PstI). 

-s Maximum number of good reads per lane.  Default: 200,000,000 
-c Minimum number of times a tag must be present to be output.  Default: 1 
-o  Output directory to contain .cnt files, one per .qseq file.  Defaults to input 

directory (the default is not recommended – it is best to use a separate directory). 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -QseqToTagCountPlugin -i qseq  
-k myGBSkey.txt -e ApeKI –o tagCounts -endPlugin -runfork1 

Gory Details: 
This is the initial step of a GBS analysis.  This step reads a user-supplied key file (mandatory argument -k) in tab-
delimited text format which indicates, for each lane of interest from a flowcell, which barcodes are assigned to 
which sample (a short example key file is provided in Appendix 1).  It then recursively searches the specified 
input directory (mandatory argument -i) and all subfolders for qseq files matching one of the flowcell/lane 
combinations in the key file and with the following acceptable file naming conventions: 

FLOWCELL_LANE_qseq.txt (example: 42A87AAXX_2_qseq.txt) 
FLOWCELL_LANE_qseq.txt.gz (example: 42A87AAXX_2_qseq.txt.gz) 
code_FLOWCELL_s_LANE_qseq.txt (example: 10225395_42A87AAXX_s_2_qseq.txt) 
code_FLOWCELL_s_LANE_qseq.txt.gz (example: 10225395_42A87AAXX_s_2_qseq.txt.gz) 

Note that both compressed (*.gz) and uncompressed (*.txt) files can be read – we recommend using compressed 
files to save disk storage space.  The “code” part of the latter two file name examples is a numerical tracking code 
generated by our sequencing center.  Our GBS pipeline doesn’t actually use this code, so you can substitute any 
text or numbers (or use one of the first two conventions).  The underscores are essential for correct parsing of the 
parts of each qseq file name (only FLOWCELL and LANE are actually used by our pipeline). 

For each qseq file that has a match in the key file, QseqToTagCountPlugin finds all reads that begin with one 
of the expected barcodes immediately followed by the expected cut site remnant (CAGC or CTGC for ApeKI) and 
trims them to 64 bases (including the cut site remnant but removing the barcode).  Reads containing N within the 
first 64 bases after the barcode are rejected.  If a read contains either a full cut site (from incomplete digestion or 
chimera formation) or the beginning of the common adapter (from restriction fragments less than 64bp) within the 
first 64 bases it is truncated appropriately and padded to 64 bases with polyA.  The actual length of truncated (or 
full 64 base) reads is recorded in the output tagCount file. 

The output of QseqToTagCountPlugin is a single tagCount file in the specified output directory (mandatory 
argument -o) for every matching qseq file in the input directory. The tagCount files are named after their 
corresponding qseq file, with *_qseq.txt.gz or *_qseq.txt replaced by *.cnt.  The tagCount files are binary, and can 
only be read by our pipeline. They contain the 64 base sequence of each good, barcoded tag (padded with polyA if 
truncated), the actual length of the tag (before padding with polyA), and the number of times that tag was 
observed in the corresponding flowcell lane.  The tags are sorted by their sequence. 

The enzyme used to create the GBS library is indicated via mandatory option -e.  Currently, our pipeline only 



4 
 

accepts ApeKI or PstI.  The -s  option (maximum number of good reads per lane) is used to set an upper limit on 
memory usage.  So far we have not encountered a qseq (or fastq) file with more than 200 million good, barcoded 
reads (the default). 

We usually keep the -c option (minimum number of times a tag must be present to be output) at its default 
value of 1.  In a typical analysis, we usually combine the results of multiple lanes, or even multiple flow cells, via 
the next step, MergeMultipleTagCountPlugin.  Tags that occur only once in a given flowcell lane might occur 
multiple times in other lanes, so they might be real (i.e., not from sequencing error). 

We recommend using qseq files if you have them because they contain all reads, not just the ones passing 
Illumina’s quality filters.  We have found that perfectly good reads (exactly matching a 64 base tag that we have 
seen many times) can be filtered out by Illumina.  If qseq files are not available, or your raw data are in 
Illumina’s latest FASTQ format (from Casava 1.8), use FastqToTagCountPlugin instead (same arguments 
as QseqToTagCountPlugin). 

MergeMultipleTagCountPlugin 

Summary: 
Merges each tagCount file in the input directory into a single “master” tagCount list.  Only keeps tags with a total 
count (after merger) greater than or equal to that specified in option -c (minimum number of times a tag must be 
present to be output).  

Input: 
• Input directory (folder) containing tagCount (*.cnt) files 

Output: 
• Merged tagCount file (it is best to send this to a separate directory from the input directory) 

Arguments: 
MergeMultipleTagCountPlugin  
-i Input directory containing tagCount (*.cnt) files. 

-o Output file name (should be in a separate directory from the input). 
-c Minimum number of times a tag must be present to be output.  Default: 1 
-t Specifies that reads should be output in FASTQ text format. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeMultipleTagCountPlugin  
-i tagCounts –o mergedTagCounts/myMasterTags.cnt –c 5 -endPlugin -runfork1 

Gory Details: 
The MergeMultipleTagCountPlugin step merges multiple tagCount files produced by the QseqToTagCountPlugin 
step (from multiple lanes and/or flowcells) into a single “master” tagCount file.  (For a description of the 
tagCount file format, see QseqToTagCountPlugin.)  All tagCount (*.cnt) files in the specified input directory 
(argument -i) are merged. 

To remove rare or singleton tags that possibly result from sequencing errors, we use the -c option (minimum 
number of times a tag must be present to be output).  A -c option setting of 10 is typical, but when deciding on an 
appropriate cutoff, you should consider the number of individuals in your analysis, the expected coverage (about 
0.4-0.5x for maize with ApeKI), the expected segregation ratio, minimum minor allele frequency of interest, etc. 
The merged tagCount output file is used as a master tag list for two subsequent steps: the QseqToTBTPlugin step 
and alignment to the reference genome.  The output is in (binary) tagCount format by default, which serves as the 
input format for the QseqToTBTPlugin step. 

We typically perform the alignment to the reference genome with external software, such as BWA.  To obtain 
a master tagCount file in FASTQ format for use as input to BWA, invoke the -t option. 



5 
 

SAMConverterPlugin 

Summary: 
Converts a SAM format alignment (*.sam) file produced by the Unix program BWA into a tagsOnPhysicalMap 
(*.topm.bin) file that can be used by the TagsToSNPByAlignmentMTPlugin for calling SNPs.  

Input: 
• SAM format alignment (*.sam) file produced by the Linux program BWA 

Output: 
• tagsOnPhysicalMap (*.topm.bin) file that can be used by the TagsToSNPByAlignmentMTPlugin for 

calling SNPs 

Arguments: 
SAMConverterPlugin  

-i Input SAM format alignment (*.sam) file produced by the Unix program BWA. 
-o Output tagsOnPhysicalMap (*.topm.bin) file that can be used by the 

TagsToSNPByAlignmentMTPlugin for calling SNPs. We recommend using the 
extension *.topm.bin. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -SAMConverterPlugin  
-i mergedTagCounts/myAlignedMasterTags.sam  
-o topm/myMasterTags.topm.bin -endPlugin -runfork1 

Gory Details: 
The next draft of this documentation will include more information on running BWA using the output of 
MergeMultipleTagCountPlugin (using -t option) as input to BWA and then using BWA to produce a *.sam file to 
be used as input to this SAMConverterPlugin.  For an example, have a look at steps 5-7 here: 
http://cbsu.tc.cornell.edu/lab/doc/gbs_pipeline_workshop_walkthrough.pdf.  However. these steps assume that the 
original fasta file containing the reference genome has already been formatted and indexed using BWA – consult 
the BWA documentation for guidance on this. 

One important point is that, for the SAMConverterPlugin to work correctly, the chromosome names in 
the original fasta file containing the reference genome must be integers, e.g.,  >1,  >2,  >3, etc. rather than  
>chrom1,  >chrom2,  >chrom3, etc. 

QseqToTBTPlugin 

Summary: 
Generates a TagsByTaxa file for each qseq file in the input directory (or in subfolders thereof).  One TagsByTaxa 
file is produced per qseq file.  Requires a master list of tags of interest, which may come either from a tagCount or 
tagsOnPhysicalMap file.  If your input files are in fastq format (and qseq files are not available), use 
FastqToTBTPlugin instead (same arguments).  

Input: 
• Barcode key file (see example in Appendix 1) 
• Directory (folder) containing qseq files 

Output: 
• Directory (folder) containing a corresponding tagsByTaxa file for every qseq file in the input directory 

http://cbsu.tc.cornell.edu/lab/doc/gbs_pipeline_workshop_walkthrough.pdf


6 
 

Arguments: 
QseqToTBTPlugin  

-i Input directory containing .qseq files. 
-k Barcode key file. 
-e Enzyme used to create the GBS library (ApeKI or PstI). 
-o Output directory. 

-c Minimum taxa count within a qseq file for a tag to be output.  Default: 1 
-t Tag count file listing unique reads (mutually exclusive with option -m). 
-m Physical map file listing unique reads (mutually exclusive with option -t). 
-y Output in TBTByte format (counts from 0-127) instead of TBTBit (0 or 1) 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -QseqToTBTPlugin -i qseq  
-k myGBSkey.txt -e ApeKI –o tbt –t mergedTagCounts/myMasterTags.cnt  
-endPlugin -runfork1 

Gory Details: 
Similar to QseqToTagCountPlugin, QseqToTBTPlugin parses qseq files for good reads that contain a barcode and 
cut site remnant and that have no N’s in the first 64 bases after the barcode, and trims them to 64 bases (not 
including the barcode).  As in QseqToTagCountPlugin, QseqToTBTPlugin appropriately truncates reads that 
contain either a full cut site or the beginning of the common adapter within the first 64 bases, and pads them to 64 
bases with polyA.  In a given GBS analysis, the same key file (-k option), containing the names of the taxa 
corresponding to each barcode in each lane, is used for both plugins (see Appendix 1 for an example key file). 

The difference between QseqToTBTPlugin and QseqToTagCountPlugin is that QseqToTBTPlugin uses the 
barcode information to keep track of which taxa each tag of interest is observed in.  Each good read in each qseq 
file is checked for a match against a set of tags of interest.  A tagsByTaxa output file is produced for every qseq 
file in the input directory that has a matching flowcell and lane in the key file.  Each output file is named after its 
corresponding input qseq file but with “_qseq.txt.gz” or “_qseq.txt” replaced by “.tbt.bin”.  Each output 
tagsByTaxa file is in binary format (only readable by our pipeline), but can be thought of as a grid where the rows 
are the tags of interest, the columns are taxa names (including flowcell, lane and well information) and the cells 
indicate whether or not a particular tag was observed in a particular taxon.  The actual length in bases of each tag 
(not including the polyA padding) is also recorded. 

The set of tags of interest are those that are present in the input master tagCount file (using the -t option) or 
tagsOnPhysicalMap file (using the mutually exclusive -m option).  We usually use the -t option, using the output 
of  MergeMultipleTagCountPlugin as the -t option input file. 

Our pipeline currently supports only the enzymes ApeKI and PstI (-e option). 
We generally leave the -c option (minimum taxa count within a qseq file for a tag to be output) at its default 

value of 1.  Filtering of tags based upon the number of taxa they appear in would be better performed at the 
MergeTagsByTaxaFilesPlugin step, but is not currently implemented (however, filtering of SNPs based upon data 
coverage/amount of missing data can be performed with the GBSHapMapFiltersPlugin).  With the default -c 
option of 1, tags that are in the master tagCount file but are not present in a given qseq file will not be output into 
the corresponding tagsByTaxa file – this is a good thing, as it saves disk space (no need to store rows containing 
nothing but zeros). 

If qseq files are not available or your raw data are in Illumina’s latest FASTQ format (from Cassava 
1.8), use FastqToTBTPlugin instead (same arguments as QseqToTBTPlugin). 

The multiple tagsByTaxa files produced by this QseqToTBTPlugin can be merged into a single master 
tagsByTaxa file in the next step, MergeTagsByTaxaFilesPlugin. 



7 
 

MergeTagsByTaxaFilesPlugin 

Summary: 
Merges all *.tbt.bin files present in the input directory and all of its subdirectories.  

Input: 
• Directory (folder) containing multiple tagsByTaxa (*.tbt.bin) files (produced by QseqToTBTPlugin) 

Output: 
• Merged tagsByTaxa file (it is best to send this to a separate directory from the input directory) 

Arguments: 
MergeTagsByTaxaFilesPlugin  
-i Input directory containing multiple tagsByTaxa (*.tbt.bin) files. 
-o Output file name (should be in a separate directory from the input). We 

recommend using the extension *.tbt.bin. 

-s Maximum number of tags the TBT can hold while merging (default: 
200,000,000).  Reduce this only if you run out of memory (omit the 
commas). 

-x Merges tag counts of taxa with identical names.  Not performed by default. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeTagsByTaxaFilesPlugin  
-i tbt –o mergedTBT/myStudy.tbt.bin -endPlugin -runfork1 

Gory Details: 
This step merges the separate tagsByTaxa files produced by the QseqToTBTPlugin (and/or FastqToTBTPlugin) 
into a single, experiment-wide tagsByTaxa file for all of the flow cell lanes in your experiment.  Currently, only 
the presence or absence of each tag in each taxon is recorded. 

The -s option controls the maximum number of tags that can be stored in the TBT tag list during the merger 
process.  It defaults to 200,000,000.  This is much larger than is needed for most purposes.  If you try to run 
MergeTagsByTaxaFilesPlugin but run out of memory, invoke this option with a number smaller than 200,000,000.  
Use the largest possible number that your memory capacity can handle.  This should be at least twice the number 
of tags in the master tagCounts (or master tagsOnPhysicalMap) file that you used to generate the individual 
tagsByTaxa files (in the QseqToTBTPlugin). 

The -x option (off by default) can be invoked to merge the tag counts of taxa with identical names in the key 
file but from different flow cells, lanes or barcodes within a lane.  However, we recommend leaving in any 
duplicated taxa for now as they can be used in a later step (GBSHapMapFiltersPlugin or 
MergeIdenticalTaxaPlugin) to check error rates. 

TagsToSNPByAlignmentMTPlugin 

Summary: 
Aligns tags from the same physical location against one another, calls SNPs from each alignment, and then 
outputs the SNP genotypes to a HapMap format file (one file per chromosome).  

Input: 
• TagsByTaxa file (*.tbt.bin) indicating the presence or absence of each tag of interest in each taxon 
• TagsOnPhysicalMap file (*.topm.bin) containing genomic position of each tag of interest. 

Output: 
• Directory (folder) containing a HapMap format genotype file (one file per chromosome). 



8 
 

Arguments: 
TagsToSNPByAlignmentMTPlugin  

-i Input TagsByTaxa (*.tbt.bin) file. 
-o Output directory.  Defaults to current directory (the default is not 

recommended – it is best to use a separate directory such as 
‘./hapmap/unfilt’). 

-m TagsOnPhysicalMap (*.topm.bin) file containing genomic position of 
tags. 

-mnF Minimum value of F (inbreeding coefficient).  Not tested by default. 
-mnMAF Minimum minor allele frequency.  Defaults to 0.01.  SNPs that pass 

either the specified minimum minor allele frequency (mnMAF) or 
count (mnMAC) will be output. 

-mnMAC Minimum minor allele count.  Defaults to 10.  SNPs that pass either the 
specified minimum minor allele count (mnMAC) or frequency 
(mnMAF) will be output. 

-mnLCov Minimum locus coverage, i.e., the proportion of taxa with at least one 
tag at the locus.  Default: 0.1 

-inclRare Include the rare alleles (3rd or 4th states) at site.  These are ignored by 
default (genotype set to missing). 

-inclGaps Include sites where the major or minor allele is a gap.  These sites are 
ignored by default. 

-s Start chromosome. 
-e End chromosome. 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -TagsToSNPByAlignmentMTPlugin  
-i mergedTBT/myStudy.tbt.bin -m topm/myMasterTags.topm.bin  
-o hapmap/unfilt -s 1 -e 10 -mnF 0.9 -endPlugin -runfork1 

Gory Details: 
In this step, a sequence alignment is created for each set of tags that align to the exact same genomic position and 
strand (where the starting point is defined by the barcode end of the tag) and SNPs are called from each 
alignment.  Tags with multiple or unknown physical genomic positions are not used.  The SNP calls from each set 
of alignments are written to a genotype file in HapMap format, with one HapMap file produced per chromosome.  
These output HapMap files are named after the input tagsByTaxa file, with “.tbt.bin” replaced with “.c#.hmp.txt”, 
where # is a chromosome number (e.g., *.c1.hmp.txt) 

If you are working with highly homozygous inbred lines or a selfing species, then be sure to use the -mnF 
(minimum F) option (we suggest setting mnF to 0.9), where ‘F’ means ‘inbreeding coefficient’.  In species like 
maize which contain abundant paralogs (from ancient chromosomal duplications), this can filter out numerous 
bad SNPs. If you are not working with inbred lines or a selfing species, then do not invoke the -mnF option. 

The options -mnMAF (minimum minor allele frequency) and -mnMAC (minimum minor allele count) can 
be used to filter out SNPs with rare minor alleles that possibly result from sequencing errors.  Keep in mind that 
SNPs that pass either of these criteria will be output, so there is no point in having one of them set stringent but 
the other too lax.  If you are working with a biparental family with 1:1 segregation you might try a mnMAF of 0.2 
and a highly stringent mnMAC close to your total number of taxa, so that it is irrelevant (in that case, only the 
mnMAF will matter).  With unrelated individuals and no way to test segregation or LD, you might want to try a 
mnMAF of 0.02 (and a highly stringent mnMAC close to your total number of taxa). 

The -mnLCov (minimum locus coverage) option can be used to filter out SNPs with very high amounts of 



9 
 

missing data from the output.  These most likely result from large restriction fragments (>400 bp) that are not 
amplified as efficiently in the PCR steps of the GBS protocol.  The default value mnLCov of 0.1 should suffice 
for most purposes. 

We recommend that you do not invoke the -inclRare option, so that 3rd and 4th allelic states (i.e., triallelic and 
quadra-allelic SNPs) are ignored (genotypes set to missing).  Any 3rd and 4th allelic states are far more likely to 
result from sequencing error than biological reality. 

Similarly, we recommend that you do not invoke the -inclGaps option, so that small indels are not scored.  
Because of alignment issues for small indels (multiple equally likely alignments), they can end up being 
positioned slightly differently in replicate runs of the plugin.  Also, because our tags are all 64 bases (or smaller) 
in length, small indels in the middle of a tag alignment always result in artifactual, compensatory small indels of 
equal size at or near the end of the tag alignment.  However, if you are interested in maximizing marker saturation 
(for example, for GWAS or for fine-mapping of a QTL), then you might want to invoke inclGaps: there will 
almost certainly be numerous sets of tag alignments that contain no SNPs but do contain a small indel.  Note that 
with inclGaps invoked, a three base indel (for example) will be output as three consecutive single base gaps in the 
HapMap file (plus an additional three artifactual, single base gaps).  If the insertion is not present in the reference 
genome, the three real gaps will all have the same position (the base in the reference genome immediately 
preceding the insertion).  Essentially they are redundant scorings of the same indel. 

The HapMap genotype files that we generate save disk space and memory by using single letters to represent 
phase unknown, diploid genotypes.  Heterozygotes are represented by IUPAC nucleotide codes: 

A = A/A 
C = C/C 
G = G/G 
T = T/T 
M = A/C 
R = A/G 
W = A/T 
S = C/G 
Y = C/T 
K = G/T 
N = missing data 

 
The “MT” in the name of this plugin indicates that it was initially written to run faster by using multiple 

threads on multiple CPUs.  However, we found that this caused some difficult to trace bugs, so the multiple 
threading is currently disabled. 

Genotypes from tags matching the minus strand of the reference genome are complemented so that they are 
recorded relative to the plus strand.  Hence, all SNPs in the output are relative to the plus strand.  For restriction 
fragment smaller than 128bp, the (plus and minus strand) reads from opposite ends can overlap and assay the 
same SNPs.  Hence, the output of TagsToSNPByAlignmentMTPlugin will contain some duplicate SNPs, each 
with different patterns of missing data.  These duplicate SNPs can be merged in the next step of the analysis, with 
the MergeDuplicateSNPsPlugin. 

MergeDuplicateSNPsPlugin 

Summary: 
Finds duplicate SNPs in the input HapMap file, and merges them if they have the same pair of alleles (not 
necessarily in the same major/minor order) and if their mismatch rate is no greater than the threshold specified by 
-maxMisMat.  If -callHets is on, then genotypic disagreements will be called heterozygotes; otherwise they will 
be set to missing (callHets is off by default). 

Input: 
• Input HapMap file(s).  Use a plus sign (+) as a wild card character to specify multiple chromosome 

numbers (each chromosome in a separate file). 



10 
 

Output: 
• HapMap files (one per chromosome) in which duplicate SNPs have been merged 

Arguments: 
MergeDuplicateSNPsPlugin  
-hmp Input HapMap file(s).  Use a plus sign (+) as a wild card character to specify 

multiple chromosome numbers (each chromosome in a separate file). 
-o Output HapMap file(s).  Use a plus sign (+) as a wild card character to specify 

multiple chromosome numbers (each chromosome in a separate file). 
-misMat Threshold genotypic mismatch rate above which the duplicate SNPs won't be 

merged.  Default: 0.05 
-callHets When two genotypes at a replicate SNP disagree for a taxon, call it a 

heterozygote.  Defaults to false (=set to missing). 

-kpUnmergDups When a pair of duplicate SNPs are not merged (because they have different 
alleles or too many mismatches), keep them.  Defaults to false (=delete them). 

-s Start chromosome.  Default: 1 

-e End chromosome.  Default: 10 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -MergeDuplicateSNPsPlugin  
-hmp hapmap/unfilt/myStudy.c+.hmp.txt  
-o hapmap/mergedSNPs/myStudy.mergedSNPs.c+.hmp.txt –misMat 0.1 –callHets  
-s 1 -e 12 -endPlugin -runfork1 

Gory Details: 
This step should be run directly after TagsToSNPByAlignmentMTPlugin, using the HapMap file(s) from that step 
as input.   

If the germplasm is not fully inbred, and still contains residual heterozygosity (like the maize NAM or IBM 
populations do) then -callHets should be on and -maxMisMat should be set fairly high (0.1 to 0.2, or even 
higher, depending on the amount of heterozygosity).  Because the sequencing coverage is usually less than 1x, 
most of the time only one allele at a heterozygous SNP will be detected (particularly for ApeKI).  Hence, duplicate 
SNPs genotypes from a true heterozygote may disagree simply because different alleles were sampled by the 
duplicate assays.  Hence, these disagreements are not necessarily errors, and should not necessarily be used to 
prevent duplicate SNPs from being merged (unless your germplasm is highly inbred, with very little residual 
heterozygosity). 

Indels (gaps) are ignored by this plugin: it makes no attempt to merge apparent duplicate gaps with the same 
chromosomal position. 

GBSHapMapFiltersPlugin 

Summary: 
Reads HapMap format genotype files (one per chromosome) and filters out SNPs with low taxon coverage 
(missing data at most taxa), high heterozygosity, low (and/or high) minor allele frequency, and (optionally) that 
are not in LD with at least one neighboring SNP.  Taxa with low SNP coverage (missing data at most SNPs) can 
also be removed.  All cutoffs are adjustable except for the LD cutoff (Bonferroni corrected p-value <0.01). 

Input: 
• Key file 
• Directory (folder) containing qseq files 



11 
 

Output: 
• Directory (folder) containing a corresponding tagCount file for every qseq file in the input directory 

Arguments: 
GBSHapMapFiltersPlugin  
-hmp Input HapMap file. Use a plus sign (+) as a wild card character to specify 

multiple chromosome numbers (each chromosome in a separate file). 
-o Output HapMap file. Use a plus sign (+) as a wild card character to specify 

multiple chromosome numbers (each chromosome in a separate file). 
-mnTCov Minimum taxon coverage, i.e. the minimum SNP call rate for a taxon to be 

included in the output, where call rate is the proportion of the SNP genotypes 
for a taxon that are not “N” (where N = missing).  Default: 0.1 

-mnScov Minimum site coverage, i.e. the minimum call rate for a SNP to be included in 
the output, where call rate is the proportion of the taxon genotypes for that SNP 
that are not “N” (where N = missing).  Default: 0.1 

-mnF Minimum value of F (inbreeding coefficient).  Not tested by default. Do not 
invoke this option unless you are working with inbred lines or an 
inbreeding species. 

-mnMAF Minimum minor allele frequency Default: 0.0 (no filtering). 
-mxMAF Maximum minor allele frequency.  Default: 1.0 (no filtering). 
-hLD Specifies that samples should be filtered for high LD.  Default: false (off). 
-sC Start chromosome.  Default: 1 

-eC End chromosome.  Default: 10 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -GBSHapMapFiltersPlugin  
-hmp hapmap/mergedSNPs/myStudy.mergedSNPs.c+.hmp.txt  
–o hapmap/filt/myStudy.mergedSNPs.filt.c+.hmp.txt -hLD -mnTCov 0.05  
-mnSCov 0.05 -sC 1 -eC 12 -endPlugin -runfork1 

Gory Details: 
If your study germplasm are from a single biparental cross, then the -hLD (high LD) filter (off by default) can be 
very useful to filter out bad SNPs with high genotyping error or incorrect physical genomic positions.  To pass 
through the LD filter, a SNP must be in statistically significant LD (Bonferroni corrected p-value < 0.01) with at 
least one SNP that is a minimum of 128 bp away (i.e., not from the same tag alignment or cut site) but within a 
window of 50 SNPs on either side.  Currently, none of these LD parameters are adjustable. 

BiParentalErrorCorrectionPlugin 

Summary: 
This documentation is yet to be written.  

Input: 
• This documentation is yet to be written 

Output: 
• This documentation is yet to be written 



12 
 

Arguments: 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 -BiParentalErrorCorrectionPlugin  
-endPlugin -runfork1 

Gory Details: 
This documentation is yet to be written. 

MergeIdenticalTaxaPlugin 

Summary: 
This documentation is yet to be written.  

Input: 
• This documentation is yet to be written 

Output: 
• This documentation is yet to be written 

Arguments: 
 

Example command: 
/programs/tassel/run_pipeline.pl -fork1 –MergeIdenticalTaxaPlugin  
-endPlugin -runfork1 

Gory Details: 
This documentation is yet to be written. 

BinaryToTextPlugin 

Summary: 
Reads a binary GBS file and outputs the equivalent text file. 

Input: 
• Binary File 

Output: 
• Text File 

Arguments: 
BinaryToTextPlugin  
-i <filename> Input binary file name. 
-o <filename> Output text file name. 
-t <type> Type of input file (TagCounts, TBTBit, TBTByte, TOPM). 

Example commands: 
/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
–i tagCounts/rice.cnt -o tagCounts/rice_cnt.txt -t TagCounts 
-endPlugin -runfork1 



13 
 

 
/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
-i tbt/rice.tbt.bin -o tbt/rice_tbt.txt -t TBTBit  
-endPlugin -runfork1 
 
/programs/tassel/run_pipeline.pl -fork1 -BinaryToTextPlugin  
-i topm/rice.topm.bin -o topm/rice_topm.txt -t TOPM  
-endPlugin -runfork1 

TextToBinaryPlugin 

Summary: 
Reads a Text GBS File and outputs the equivalent binary file. 

Input: 
• Text File 

Output: 
• Binary File 

Arguments: 
TextToBinaryPlugin  
-i <filename> Input text file name. 

-o <filename> Output binary file name. 
-t <type> Type of file (TagCounts, TBTBit, TBTByte, TOPM). 

Example commands: 
/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
–i tagCounts/rice.txt -o tagCounts/rice_cnt.cnt -t TagCounts 
-endPlugin -runfork1 
 
/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
-i tbt/rice.tbt.txt -o tbt/rice_tbt.bin -t TBTBit  
-endPlugin -runfork1 
 
/programs/tassel/run_pipeline.pl -fork1 -TextToBinaryPlugin  
-i topm/rice.topm.txt -o topm/rice_topm.bin -t TOPM  
-endPlugin -runfork1 
 
 

Appendix 1:  Key file example 
 
The barcode key file is formatted as tab-delimited text.  You can create it from Excel if you save it as tab-
delimited text.  In the example key below there are two lanes, each at 96 plex.  The barcodes correspond to our 
96-plex ApeKI layout.  You can combine lanes from multiple flow cells in a single key file and GBS analysis if 
you wish.  Note that there is a “Blank” in each plate, in different positions (H12 and H11).  This facilitates 
diagnosis of accidental plate swaps.  Only the first 7 columns are mandatory.  You can add additional columns to 
the key file as you see fit – these will be ignored by the pipeline.  The sample names must not contain spaces or 
colons (‘:’).  However, it is OK to include dashes, parentheses, or underscores: - ( ) _. 



14 
 

 
Flowcell Lane Barcode Sample PlateName Row Column 
ABC12AAXX 1 CTCC MySample001 MyPlate1 A 1 
ABC12AAXX 1 TGCA MySample002 MyPlate1 A 2 
ABC12AAXX 1 ACTA MySample003 MyPlate1 A 3 
ABC12AAXX 1 CAGA MySample004 MyPlate1 A 4 
ABC12AAXX 1 AACT MySample005 MyPlate1 A 5 
ABC12AAXX 1 GCGT MySample006 MyPlate1 A 6 
ABC12AAXX 1 TGCGA MySample007 MyPlate1 A 7 
ABC12AAXX 1 CGAT MySample008 MyPlate1 A 8 
ABC12AAXX 1 CGCTT MySample009 MyPlate1 A 9 
ABC12AAXX 1 TCACC MySample010 MyPlate1 A 10 
ABC12AAXX 1 CTAGC MySample011 MyPlate1 A 11 
ABC12AAXX 1 ACAAA MySample012 MyPlate1 A 12 
ABC12AAXX 1 TTCTC MySample013 MyPlate1 B 1 
ABC12AAXX 1 AGCCC MySample014 MyPlate1 B 2 
ABC12AAXX 1 GTATT MySample015 MyPlate1 B 3 
ABC12AAXX 1 CTGTA MySample016 MyPlate1 B 4 
ABC12AAXX 1 ACCGT MySample017 MyPlate1 B 5 
ABC12AAXX 1 GTAA MySample018 MyPlate1 B 6 
ABC12AAXX 1 GGTTGT MySample019 MyPlate1 B 7 
ABC12AAXX 1 CCAGCT MySample020 MyPlate1 B 8 
ABC12AAXX 1 TTCAGA MySample021 MyPlate1 B 9 
ABC12AAXX 1 TAGGAA MySample022 MyPlate1 B 10 
ABC12AAXX 1 GCTCTA MySample023 MyPlate1 B 11 
ABC12AAXX 1 CCACAA MySample024 MyPlate1 B 12 
ABC12AAXX 1 GCTTA MySample025 MyPlate1 C 1 
ABC12AAXX 1 CTTCCA MySample026 MyPlate1 C 2 
ABC12AAXX 1 GAGATA MySample027 MyPlate1 C 3 
ABC12AAXX 1 ATGCCT MySample028 MyPlate1 C 4 
ABC12AAXX 1 TATTTTT MySample029 MyPlate1 C 5 
ABC12AAXX 1 CTTGCTT MySample030 MyPlate1 C 6 
ABC12AAXX 1 ATGAAAC MySample031 MyPlate1 C 7 
ABC12AAXX 1 AAAAGTT MySample032 MyPlate1 C 8 
ABC12AAXX 1 GAATTCA MySample033 MyPlate1 C 9 
ABC12AAXX 1 GAACTTC MySample034 MyPlate1 C 10 
ABC12AAXX 1 GGACCTA MySample035 MyPlate1 C 11 
ABC12AAXX 1 GTCGATT MySample036 MyPlate1 C 12 
ABC12AAXX 1 AACGCCT MySample037 MyPlate1 D 1 
ABC12AAXX 1 AATATGC MySample038 MyPlate1 D 2 
ABC12AAXX 1 ACGACTAC MySample039 MyPlate1 D 3 
ABC12AAXX 1 GGTGT MySample040 MyPlate1 D 4 
ABC12AAXX 1 TAGCATGC MySample041 MyPlate1 D 5 
ABC12AAXX 1 AGTGGA MySample042 MyPlate1 D 6 
ABC12AAXX 1 TAGGCCAT MySample043 MyPlate1 D 7 
ABC12AAXX 1 TGCAAGGA MySample044 MyPlate1 D 8 
ABC12AAXX 1 TGGTACGT MySample045 MyPlate1 D 9 
ABC12AAXX 1 TCTCAGTC MySample046 MyPlate1 D 10 
ABC12AAXX 1 CCGGATAT MySample047 MyPlate1 D 11 
ABC12AAXX 1 CGCCTTAT MySample048 MyPlate1 D 12 
ABC12AAXX 1 AGGC MySample049 MyPlate1 E 1 
ABC12AAXX 1 GATC MySample050 MyPlate1 E 2 
ABC12AAXX 1 TCAC MySample051 MyPlate1 E 3 
ABC12AAXX 1 AGGAT MySample052 MyPlate1 E 4 
ABC12AAXX 1 ATTGA MySample053 MyPlate1 E 5 
ABC12AAXX 1 CATCT MySample054 MyPlate1 E 6 



15 
 

Flowcell Lane Barcode Sample PlateName Row Column 
ABC12AAXX 1 CCTAC MySample055 MyPlate1 E 7 
ABC12AAXX 1 GAGGA MySample056 MyPlate1 E 8 
ABC12AAXX 1 GGAAC MySample057 MyPlate1 E 9 
ABC12AAXX 1 GTCAA MySample058 MyPlate1 E 10 
ABC12AAXX 1 TAATA MySample059 MyPlate1 E 11 
ABC12AAXX 1 TACAT MySample060 MyPlate1 E 12 
ABC12AAXX 1 TCGTT MySample061 MyPlate1 F 1 
ABC12AAXX 1 ACCTAA MySample062 MyPlate1 F 2 
ABC12AAXX 1 ATATGT MySample063 MyPlate1 F 3 
ABC12AAXX 1 ATCGTA MySample064 MyPlate1 F 4 
ABC12AAXX 1 CATCGT MySample065 MyPlate1 F 5 
ABC12AAXX 1 CGCGGT MySample066 MyPlate1 F 6 
ABC12AAXX 1 CTATTA MySample067 MyPlate1 F 7 
ABC12AAXX 1 GCCAGT MySample068 MyPlate1 F 8 
ABC12AAXX 1 GGAAGA MySample069 MyPlate1 F 9 
ABC12AAXX 1 GTACTT MySample070 MyPlate1 F 10 
ABC12AAXX 1 GTTGAA MySample071 MyPlate1 F 11 
ABC12AAXX 1 TAACGA MySample072 MyPlate1 F 12 
ABC12AAXX 1 TGGCTA MySample073 MyPlate1 G 1 
ABC12AAXX 1 ACGTGTT MySample074 MyPlate1 G 2 
ABC12AAXX 1 ATTAATT MySample075 MyPlate1 G 3 
ABC12AAXX 1 ATTGGAT MySample076 MyPlate1 G 4 
ABC12AAXX 1 CATAAGT MySample077 MyPlate1 G 5 
ABC12AAXX 1 CGCTGAT MySample078 MyPlate1 G 6 
ABC12AAXX 1 CGGTAGA MySample079 MyPlate1 G 7 
ABC12AAXX 1 CTACGGA MySample080 MyPlate1 G 8 
ABC12AAXX 1 GCGGAAT MySample081 MyPlate1 G 9 
ABC12AAXX 1 TAGCGGA MySample082 MyPlate1 G 10 
ABC12AAXX 1 TCGAAGA MySample083 MyPlate1 G 11 
ABC12AAXX 1 TCTGTGA MySample084 MyPlate1 G 12 
ABC12AAXX 1 TGCTGGA MySample085 MyPlate1 H 1 
ABC12AAXX 1 AACCGAGA MySample086 MyPlate1 H 2 
ABC12AAXX 1 ACAGGGAA MySample087 MyPlate1 H 3 
ABC12AAXX 1 ACGTGGTA MySample088 MyPlate1 H 4 
ABC12AAXX 1 CCATGGGT MySample089 MyPlate1 H 5 
ABC12AAXX 1 CGCGGAGA MySample090 MyPlate1 H 6 
ABC12AAXX 1 CGTGTGGT MySample091 MyPlate1 H 7 
ABC12AAXX 1 GCTGTGGA MySample092 MyPlate1 H 8 
ABC12AAXX 1 GGATTGGT MySample093 MyPlate1 H 9 
ABC12AAXX 1 GTGAGGGT MySample094 MyPlate1 H 10 
ABC12AAXX 1 TATCGGGA MySample095 MyPlate1 H 11 
ABC12AAXX 1 TTCCTGGA Blank MyPlate1 H 12 
ABC12AAXX 2 CTCC MySample096 MyPlate2 A 1 
ABC12AAXX 2 TGCA MySample097 MyPlate2 A 2 
ABC12AAXX 2 ACTA MySample098 MyPlate2 A 3 
ABC12AAXX 2 CAGA MySample099 MyPlate2 A 4 
ABC12AAXX 2 AACT MySample100 MyPlate2 A 5 
ABC12AAXX 2 GCGT MySample101 MyPlate2 A 6 
ABC12AAXX 2 TGCGA MySample102 MyPlate2 A 7 
ABC12AAXX 2 CGAT MySample103 MyPlate2 A 8 
ABC12AAXX 2 CGCTT MySample104 MyPlate2 A 9 
ABC12AAXX 2 TCACC MySample105 MyPlate2 A 10 
ABC12AAXX 2 CTAGC MySample106 MyPlate2 A 11 
ABC12AAXX 2 ACAAA MySample107 MyPlate2 A 12 
ABC12AAXX 2 TTCTC MySample108 MyPlate2 B 1 



16 
 

Flowcell Lane Barcode Sample PlateName Row Column 
ABC12AAXX 2 AGCCC MySample109 MyPlate2 B 2 
ABC12AAXX 2 GTATT MySample110 MyPlate2 B 3 
ABC12AAXX 2 CTGTA MySample111 MyPlate2 B 4 
ABC12AAXX 2 ACCGT MySample112 MyPlate2 B 5 
ABC12AAXX 2 GTAA MySample113 MyPlate2 B 6 
ABC12AAXX 2 GGTTGT MySample114 MyPlate2 B 7 
ABC12AAXX 2 CCAGCT MySample115 MyPlate2 B 8 
ABC12AAXX 2 TTCAGA MySample116 MyPlate2 B 9 
ABC12AAXX 2 TAGGAA MySample117 MyPlate2 B 10 
ABC12AAXX 2 GCTCTA MySample118 MyPlate2 B 11 
ABC12AAXX 2 CCACAA MySample119 MyPlate2 B 12 
ABC12AAXX 2 GCTTA MySample120 MyPlate2 C 1 
ABC12AAXX 2 CTTCCA MySample121 MyPlate2 C 2 
ABC12AAXX 2 GAGATA MySample122 MyPlate2 C 3 
ABC12AAXX 2 ATGCCT MySample123 MyPlate2 C 4 
ABC12AAXX 2 TATTTTT MySample124 MyPlate2 C 5 
ABC12AAXX 2 CTTGCTT MySample125 MyPlate2 C 6 
ABC12AAXX 2 ATGAAAC MySample126 MyPlate2 C 7 
ABC12AAXX 2 AAAAGTT MySample127 MyPlate2 C 8 
ABC12AAXX 2 GAATTCA MySample128 MyPlate2 C 9 
ABC12AAXX 2 GAACTTC MySample129 MyPlate2 C 10 
ABC12AAXX 2 GGACCTA MySample130 MyPlate2 C 11 
ABC12AAXX 2 GTCGATT MySample131 MyPlate2 C 12 
ABC12AAXX 2 AACGCCT MySample132 MyPlate2 D 1 
ABC12AAXX 2 AATATGC MySample133 MyPlate2 D 2 
ABC12AAXX 2 ACGACTAC MySample134 MyPlate2 D 3 
ABC12AAXX 2 GGTGT MySample135 MyPlate2 D 4 
ABC12AAXX 2 TAGCATGC MySample136 MyPlate2 D 5 
ABC12AAXX 2 AGTGGA MySample137 MyPlate2 D 6 
ABC12AAXX 2 TAGGCCAT MySample138 MyPlate2 D 7 
ABC12AAXX 2 TGCAAGGA MySample139 MyPlate2 D 8 
ABC12AAXX 2 TGGTACGT MySample140 MyPlate2 D 9 
ABC12AAXX 2 TCTCAGTC MySample141 MyPlate2 D 10 
ABC12AAXX 2 CCGGATAT MySample142 MyPlate2 D 11 
ABC12AAXX 2 CGCCTTAT MySample143 MyPlate2 D 12 
ABC12AAXX 2 AGGC MySample144 MyPlate2 E 1 
ABC12AAXX 2 GATC MySample145 MyPlate2 E 2 
ABC12AAXX 2 TCAC MySample146 MyPlate2 E 3 
ABC12AAXX 2 AGGAT MySample147 MyPlate2 E 4 
ABC12AAXX 2 ATTGA MySample148 MyPlate2 E 5 
ABC12AAXX 2 CATCT MySample149 MyPlate2 E 6 
ABC12AAXX 2 CCTAC MySample150 MyPlate2 E 7 
ABC12AAXX 2 GAGGA MySample151 MyPlate2 E 8 
ABC12AAXX 2 GGAAC MySample152 MyPlate2 E 9 
ABC12AAXX 2 GTCAA MySample153 MyPlate2 E 10 
ABC12AAXX 2 TAATA MySample154 MyPlate2 E 11 
ABC12AAXX 2 TACAT MySample155 MyPlate2 E 12 
ABC12AAXX 2 TCGTT MySample156 MyPlate2 F 1 
ABC12AAXX 2 ACCTAA MySample157 MyPlate2 F 2 
ABC12AAXX 2 ATATGT MySample158 MyPlate2 F 3 
ABC12AAXX 2 ATCGTA MySample159 MyPlate2 F 4 
ABC12AAXX 2 CATCGT MySample160 MyPlate2 F 5 
ABC12AAXX 2 CGCGGT MySample161 MyPlate2 F 6 
ABC12AAXX 2 CTATTA MySample162 MyPlate2 F 7 
ABC12AAXX 2 GCCAGT MySample163 MyPlate2 F 8 



17 
 

Flowcell Lane Barcode Sample PlateName Row Column 
ABC12AAXX 2 GGAAGA MySample164 MyPlate2 F 9 
ABC12AAXX 2 GTACTT MySample165 MyPlate2 F 10 
ABC12AAXX 2 GTTGAA MySample166 MyPlate2 F 11 
ABC12AAXX 2 TAACGA MySample167 MyPlate2 F 12 
ABC12AAXX 2 TGGCTA MySample168 MyPlate2 G 1 
ABC12AAXX 2 ACGTGTT MySample169 MyPlate2 G 2 
ABC12AAXX 2 ATTAATT MySample170 MyPlate2 G 3 
ABC12AAXX 2 ATTGGAT MySample171 MyPlate2 G 4 
ABC12AAXX 2 CATAAGT MySample172 MyPlate2 G 5 
ABC12AAXX 2 CGCTGAT MySample173 MyPlate2 G 6 
ABC12AAXX 2 CGGTAGA MySample174 MyPlate2 G 7 
ABC12AAXX 2 CTACGGA MySample175 MyPlate2 G 8 
ABC12AAXX 2 GCGGAAT MySample176 MyPlate2 G 9 
ABC12AAXX 2 TAGCGGA MySample177 MyPlate2 G 10 
ABC12AAXX 2 TCGAAGA MySample178 MyPlate2 G 11 
ABC12AAXX 2 TCTGTGA MySample179 MyPlate2 G 12 
ABC12AAXX 2 TGCTGGA MySample180 MyPlate2 H 1 
ABC12AAXX 2 AACCGAGA MySample181 MyPlate2 H 2 
ABC12AAXX 2 ACAGGGAA MySample182 MyPlate2 H 3 
ABC12AAXX 2 ACGTGGTA MySample183 MyPlate2 H 4 
ABC12AAXX 2 CCATGGGT MySample184 MyPlate2 H 5 
ABC12AAXX 2 CGCGGAGA MySample185 MyPlate2 H 6 
ABC12AAXX 2 CGTGTGGT MySample186 MyPlate2 H 7 
ABC12AAXX 2 GCTGTGGA MySample187 MyPlate2 H 8 
ABC12AAXX 2 GGATTGGT MySample188 MyPlate2 H 9 
ABC12AAXX 2 GTGAGGGT MySample189 MyPlate2 H 10 
ABC12AAXX 2 TATCGGGA Blank MyPlate2 H 11 
ABC12AAXX 2 TTCCTGGA MySample190 MyPlate2 H 12 

 
 


	Table of Contents
	Introduction
	Recommended directory (folder) structure for a GBS analysis
	QseqToTagCountPlugin
	MergeMultipleTagCountPlugin
	SAMConverterPlugin
	QseqToTBTPlugin
	MergeTagsByTaxaFilesPlugin
	TagsToSNPByAlignmentMTPlugin
	MergeDuplicateSNPsPlugin
	GBSHapMapFiltersPlugin
	BiParentalErrorCorrectionPlugin
	MergeIdenticalTaxaPlugin
	BinaryToTextPlugin
	TextToBinaryPlugin
	Appendix 1:  Key file example

