
Calling short variants with GATK4:
exercise instructions for BioHPC Cloud
computers

Workshop contact

bukowski@cornell.edu, qisun@cornell.edu

Data used in the exercise

We will use D. melanogaster WGS paired-end Illumina data with NCBI accessions SRR1663608,
SRR1663609, SRR1663610, SRR1663611, corresponding to samples ZW155, ZW177, ZW184, and
ZW185 respectively. To speed up the calculations, the data, originally at about 10 million read
pairs per sample, has been down-sampled by 50%.

The exercise consists of several steps leading from WGS Illumina reads to four-sample variant
calls, as specified in GATK Best Practices. To call variants in all four samples, all steps from read
alignment through haplotype calling need to be performed for each of the four FASTQ file pairs.
On a multi-CPU machine with large memory, such runs could be launched in parallel (for
example, by manually submitting a given step in the background, each time for different sample).
For the purpose of the exercise, please run all these steps for at least one sample of your choice.
All intermediate results for other samples, needed in the final joint variant calling step, have been
pre-computed and can be copied from the workshop directories (see detailed instructions
below).

Log in to your workshop machine

The machine allocations are listed on the workshop website: https://biohpc.cornell.edu/ww/mach
ines.aspx?i=124.

Details of the login procedure using ssh or VNC clients are available in the document https://bioh
pc.cornell.edu/lab/doc/Remote_access.pdf.

Use your ssh client with BioHPC Lab credentials to open an ssh session. If you wish, you can
open multiple sessions to have access to multiple terminal windows (useful for program
monitoring). If you are familiar with the screen program, you should use it to open multiple
shells.

Alternatively, use the VNC client to open a VNC graphical session (you will need to first start the
VNC server on the machine from “My Reservations” page reachable from https://biohpc.cornell.
edu after logging in to the website. To close the VNC connection, click on the “X” in top-right
corner of the VNC window (but DO NOT log out!). This will ensure that your session (all windows,
programs, etc.) will keep running so that you can come back to it by logging in again.

General tips

af://n498
af://n501
mailto:bukowski@cornell.edu
mailto:qisun@cornell.edu
af://n503
af://n506
https://biohpc.cornell.edu/ww/machines.aspx?i=124
https://biohpc.cornell.edu/lab/doc/Remote_access.pdf
https://biohpc.cornell.edu/
af://n511

Examine all the provided shell scripts (*.sh), for example, opening them in a text editor (such
as nano or vim). Read explanatory comments. Notice the use of environment variables to
simplify and generalize scripts. For example, following the definition of a variable ACC

any time $ACC or ${ACC} appears in the script, it will be interpreted as SRR1663609 . Note the
technique of breaking long lines into smaller pieces terminated with the “\” character. For bash
this is still a long line, but easier to read for us.

Monitor the progress of your activities using the top command, preferably run in a separate
window:

This will show dynamically updated list of your processes, with the most active ones on top. Since
the GATK tools are written in Java, the process you will see most will be Java virtual machine
called java . In the alignment stage, the process to look for will be the BWA aligner called bwa .
The absence of any active processes (consuming CPU time) on your top list will indicate
completion (or crash) of any scripts you were running. Pay attention to memory usage (%MEM
column) of different runs.

Peek into the log files. Each time a script is run, the screen output from all commands is saved
into a log file (say, script.log). Although the messages written to that file may sound cryptic at
times, they generally allow the user to figure out which stage of the calculation is running at the
moment. It also contains useful timing information (start and end dates of individual stages,
elapsed time, ETA time). To look into the log file, you can use any of the following commands

more script.log (page through the file from the beginning)

tail -100 script.log (display the last 100 lines of the file)

tail -f script.log (continuously display incoming lines)

Of course, you can also look at the whole file by opening it in a text editor. Upon exit, discard any
changes you may have inadvertently made.

Look into the working directory (/workdir/<yourID>) As the run progresses, various
intermediate files are being produced. Executing ls -al once in a while will allow you to see
those files and how they increase in size.

If you can’t see the expected output file even though it seems that the script has ended, it
usually means that something went wrong. Examine the screen log file (e.g., open it in text editor)
looking for error messages.

You can disconnect. If a step takes longer than you are willing to wait, you can disconnect from
your VNC or screen session (in VNC, click on the cross in top right corner of the VNC window, but
do not “Log Out”!). All your programs and windows will continue running and you can examine
the results when you reconnect at a later time. Also, if you are working via an ssh client (rather
than VNC) and without screen, you can safely log out of your ssh session as long as the script
you are running was submitted in the background through nohup (as recommended
throughout this exercise). The script will still be running (or will have finished) next time you log in
to the machine.

ACC=SRR1663609

top -u <yourID>

af://n526

Fetch input files and scripts to your local scratch
directory

If not yet done, create your subdirectory in the scratch file system /workdir . In the following, we
will assume the user ID yourID – please replace it with your own user ID.

(The last line will create a temporary directory where Java will be instructed to store its scratch
files.) Copy the exercise files from the shared location to your scratch directory (it is essential that
all calculations take place here):

When the copy operation completes, verify by listing the content of the current directory with the
command ls -al . You should see read files:

Check the file sizes – they should be around 410-430 MB each. Along with the read files, several
shell scripts *.sh are provided in subdirectory scripts , corresponding to various stages of the
pipeline. The subdirectory genome contains a FASTA file genome.fa with the D. melanogaster
reference genome.

Prepare reference genome

The file genome.fa in subdirectory genome is the reference we will be aligning the reads to.
Before starting the pipeline, the genome needs to be indexed for the BWA aligner. Also, length
information for all chromosomes needs to be summarized.

All this can be done by running the shell script prepare_genome.sh . Run the script as follows:

The script will run in the background and should take about 10 minutes minutes to complete (use
top -u <yourID> in a separate window to monitor your processes). After it completes, list the
content of subdirectory genome . The files genome.fa.fai and genome.fa.dict are simple text
files summarizing chromosome sizes and starting byte positions in the original FASTA file. The

cd /workdir

mkdir <yourID>

cd <yourID>

mkdir tmp

cp /shared_data/Variants_workshop_2019/*.fastq.gz .

cp -r /shared_data/Variants_workshop_2019/genome .

cp -r /shared_data/Variants_workshop_2019/scripts .

SRR1663608_thinned_1.fastq.gz

SRR1663608_thinned_2.fastq.gz

SRR1663609_thinned_1.fastq.gz

SRR1663609_thinned_2.fastq.gz

SRR1663610_thinned_1.fastq.gz

SRR1663610_thinned_2.fastq.gz

SRR1663611_thinned_1.fastq.gz

SRR1663611_thinned_2.fastq.gz

nohup ./scripts/prepare_genome.sh >& prepare_genome.log &

af://n526
af://n535

other files constitute the BWA index.

Align reads to reference

The script aln_bwa.sh will start the bwa aligner for accession SRR1663609 (sample ZW177).
Look at the script (e.g., with the nano editor). In particular, note the definition of read group in
bwa command line (bwa will insert it into the alignment file it generates). Note also that the raw
output from the bwa mem command (normally written to standard output STDOUT in human-
readable SAM format) is piped (using the "|" syntax) into another command, samtools view -

Sb , which converts it right away into a compressed binary file in BAM format, equivalent to SAM,
but several times smaller. Thanks to this piping mechanism, the large, intermediate output file
from bwa mem does not need to be written to disk.

In our exercise, each sample is sequenced once on one Illumina lane.

Start the script (in /workdir/<yourID>):

The program will run in the background, saving any screen output to the log file we decided to
name bwa_aln_SRR1663609.log . Approximate run time: 10 minutes.

The result will be the file SRR1663609.bam , describing the alignments in BAM format. This file is
a binary file. Briefly examine its contents using the command samtools which reads this binary
file and converts it to human-readable text format, printing it to the screen:

Piping the output from samtools through less allows us to view this output page by page; to
exit the paginator - press q. The option -h make samtools print the entire content of the BAM
file, including the header.

If you wish, repeat the run with different sample(s) (it will come in handy in the next session,
when we will be calling variants from multiple samples). To do this, edit bwa_aln.sh , and change
the SRR accession and the corresponding sample name where needed (don’t forget the read
group declaration!), and re-run the script. If you wish, you can include all four alignment
commands in the script, to be executed one by one.

Sort and mark duplicates

In this step, any duplicate fragments found in the BAM file obtained previously will now be
marked to be ignored in downstream analysis and the alignments will be sorted over genomic
coordinate. The resulting sorted BAM file will also be indexed. All these operations are now
performed by a single GATK tool called MarkDuplicatesSpark, as used in the script
sort_dedup_index.sh . To launch the script, type

nohup ./scripts/bwa_aln.sh >& bwa_aln_SRR1663609.log &

samtools view -h SRR1663609.bam | less

nohup ./scripts/sort_dedup_index.sh SRR1663609 >&

sort_dedup_index_SRR1663609.log &

af://n540
af://n550

The script takes one argument (the SRR accession). To re-run it for a different accession, just
change the argument in the command above – there is no need to change anything in the script
itself. However, edit the script and examine the syntax of the commands and any informative
comments it may contain. The run for one sample will take approximately 10 minutes. Examine
the log file for any errors and detailed timing information. It is actually convenient to monitor the
log file during the run (tail -f sort_dedup_index_SRR1663609.log).

The result of the run will be the file SRR1663609.sorted.dedup.bam , accompanied by the index
file SRR1663609.sorted.dedup.bai .

Check the alignment stats summary of the obtained file, running the samtools command

Can you tell how many reads have been mapped? How many have been marked as duplicate?

Visualize the alignments using IGV

To complete this exercise, you need to be connected to the machine with VNC, or have the IGV
viewer installed on your laptop. If you are logged in with VNC, open a terminal window and enter

The IGV window will appear in a few moments. In the navigation bar, go to Genomes and select
Load Genome from File. Browse to /workdir/<yourID>/genome and select the file genome.fa .
In the chromosome selection dropdown (which initially says All) you should see D melanogaster
chromosome names. Now load one of the BAM files created during the exercise: go to File -->
Load From File, browse to /workdir/ , and select one of the BAM files. Select one of the
chromosomes and zoom in (using the slider in top right corner) enough to see alignments.

IGV has plenty of display options, some available in View menu tag, some showing up upon a
right click within the display window. Try to familiarize yourself with the program’s capabilities.
For example, try different read coloring schemes based on various properties of aligned pairs
(right click within window, then select Color alignments by…). Notice that left-clicking on (or just
hovering over – it is configurable) a read will display detailed information about it, as found in the
BAM file. You may find it helpful to use IGV’s Help link to learn more.

If you are not connected via VNC but have the IGV viewer installed on your laptop, you will first
need to transfer the reference genome sequence file genome.fa from
/workdir/<yourID>/genome from your workshop machine to your laptop (and remember the
location where you put it). You will also need to transfer any BAM files you want to visualize. To
perform these transfers, you can use any sftp client such as FileZilla. Once all necessary files are
on your laptop, open IGV there and follow the instructions above.

Run GATK HaplotypeCaller on individual samples

In this step, we will run the HaplotypeCaller on our BAM files to produce genotype likelihood
information for each sample for each locus in the genomic region of interest. Typically, this region
would be the whole genome. To save time, we will concentrate on one chromosome, chr2R (see
the -L option in hc.sh script). To launch the calculation for one of the samples (e.g.,

samtools flagstat SRR1663609.sorted.dedup.bam

/programs/bin/igv/igv

af://n559
af://n566

SRR1663609), type

The screen output from the command will be written to the log file specified above. The expected
result will be the file SRR1663609.g.vcf . containing the intermediate genotyping data for this
sample in GVCF format.

The estimated run time of this step is 1 hour, and it has to be repeated for the other 3
samples. In real life, calculation for different samples would be run concurrently as different
processes on the same multi-core machine, or on separate machines. It is also possible to
parallelize the calculation over genomic coordinate, i.e., run separate jobs per sample per (a piece
of) a chromosome (which can be specified with the -L option of HaplotypeCaller – see hc.sh
script). Some level of parallelism can be achieved in each individual run of HaplotypeCaller by
using multiple threads in the PairHMM portion of the algorithm - this is enabled using the option
--native-pair-hmm-threads (set to 4 in script hc.sh).

For the purpose of the exercise, we would recommend that you run this step using hc.sh and
script for at least one of the samples, e.g., the one for which you prepared the BAM file in
previous section. Any BAM (and bai) files you may be missing can by fetched from the shared
workshop directory, e.g.,

and similarly for other samples. If you are short of time, you can simply skip this calculation and
fetch all the ready-made *.g.vcf files (see next Section). In any case, please examine the hc.sh
script.

Once the *.g.vcf file(s) are in your work directory, examine them (e.g., use the less viewer or
open in nano text editor – possible for short test files like these) and confront with the gVCF
format description at https://www.broadinstitute.org/gatk/guide/article?id=4017.

Have you completed the HaplotypeCaller step for
all four samples?

If yes, you should have generated four *.g.vcf files (along with the corresponding indexes) and
can proceed to joint variant calling part of the exercise. If not, copy the pre-made *.g.vcf files
and the corresponding index files *.g.vcf.idx to your directory now:

Joint variant calling with GenotypeGVCFs

Before the intermediate, sample-level files *.g.vcf results can be used to call variants jointly on
all four samples, they have to be merged into a single, multi-sample g.vcf file using the GATK4’s
tool CombineGVCFs . The script combineGVCFs.sh calling this command is run as follows:

nohup ./scripts/hc.sh SRR1663609 >& hc_SRR1663609.log &

cp /shared_data/Variants_workshop_2019/processed_bams/SRR1663610*.ba* .

cp /shared_data/Variants_workshop_2019/premade_gvcf/*.g.vcf* .

nohup ./scripts/combineGVCFs.sh >& combineGVCFs.log &

https://www.broadinstitute.org/gatk/guide/article?id=4017
af://n575
af://n579

and results in a merged file all.g.vcf.

Once the merged file is ready, the script genotypeGVCFs.sh uses the GenotypeGVCFs tool to
perform the joint variant calling

As usual, the script will run in the background, saving all screen output to the log file. The script
takes no arguments, since all the necessary information (sample IDs) is hard-coded in the script
explicitly. The output (as specified in the GATK command line) is the file all.vcf , containing the
raw (i.e., not yet filtered or recalibrated) variant calls for our 4-sample “population”. Open this file
in a text editor and examine its content. Estimated run time: 5-6 minutes.

Have you completed the BWA alignment step for all
four samples?

If yes, you should have generated four *.bam files (along with the corresponding indexes *.bai)
and can proceed to next part of the exercise, which is an example of using FreeBayes for joint
variant calling. If not, copy the pre-made *.bam and the corresponding *.bai files to your
directory now:

Joint variant calling using FreeBayes

FreeBayes is a variant-calling program by Erik Garrison et al., https://github.com/ekg/freebayes.
It is one of the alternatives to GATK. Similarly to GATK’s HaplotypeCaller, FreeBayes uses
haplotype-based approach to variant detection, although implemented differently.

The input for FreeBayes consists of alignment BAM files for all samples involved. We will use our
processed BAM files obtained earlier in this exercise (you can copy those from the workshop
shared space, as described above). Assuming all BAM files are in place, call variants using the
script fb.sh :

The result will be the variant file fb.vcf . Estimated run time: 10 minutes.

Examining the resulting VCF file, notice that the parameters in the ANNOTATION field generated
by FreeBayes are generally different than those emitted by GATK callers.

Filter variants

The VCF files obtained in previous steps are raw results, likely to contain a lot of false positives,
depending on the stringency options used in calling. Since the calling steps are time-consuming,
it is generally advisable to set these options to emit an inclusive set of variants, and then filter
this set over various parameters, such as those recorded in the INFO field of a VCF file. In GATK,

nohup ./scripts/genotypeGVCFs.sh >& genotypeGVCFs.log &

cp /shared_data/Variants_workshop_2019/processed_bams/*.ba? .

nohup ./scripts/fb.sh >& fb.log &

af://n587
af://n591
https://github.com/ekg/freebayes
af://n598

the option --stand-call-conf controls the lower threshold on the quality (the QUAL field of VCF)
of variants to be output. This option should be set to some low value (e.g., 5 as opposed to the
default 30).

Filtering of the raw set of variants can be accomplished using many different tools. In a lot of
cases, one can simply utilize standard Linux text parsing tools, like grep, awk, or sed. For
example, to extract a subset of variants with QUAL greater than, say, 60, from raw all.vcf we
could use the following commands:

The first command extracts the VCF header lines (containing “#”) into a new VCF file, while the
second command processes the non-header lines, appending them to the new file only if the
sixth column (that’s where QUAL is) is above 60.

 GATK offers a tool called VariantFiltration, which allows more complex filtering patterns. An
example script using this tool is called filter_vcf.sh . As you examine this script, you will notice
that different filtering criteria an be applied to SNPs than for indels. To accomplish this, SNPs and
indels are first extracted to separate files, these files are filtered, and then the SNP and indel
filtered files are merged back into a single filtered file. To run the filtering script, enter

(note that we are supplying the prefix of the VCF file name, i.e., without the .vcf extension as
argument). The filtered VCF file will be called all.filtered.vcf (the corresponding index file
*.vcf.idx will also be created). Other intermediate files (with separate SNPs, indels, filtered and
not, along with their indexes) will also be produced – these may be deleted.

Examine the filtered VCF file. Notice the change in the FILTER field. Instead of dot “.” (no filtering
information), this field will now contain flags PASS (variants which passed the filter) and
my_snp_filter or my_indel_filter (both these strings were defined in filtering command) –
marking variants which failed the respective filters. Note that no variant has been removed
from the file. The ones that failed filtering are just marked as such.

Estimated run time: 3 minutes.

Basic stats and comparison of variant sets

Using Linux commands

Given a VCF file, its simplest properties may be obtained by running standard Linux text parsing
tools. For example, to get the number of variants in a file, run the following:

(grep filters out the header lines and pipes its output into wc -l which counts the remaining
lines and displays the result on screen). To extract sites located between positions10000 and
20000 on chromosome chr2R and save them in a file, simply run

grep "#" all.vcf > all.qual60.vcf

grep -v "#" all.vcf | awk '{if($6>60) print}' >> all.qual60.vcf

nohup ./scripts/filter_vcf.sh all >& filter_vcf.log &

grep -v "#" all.vcf | wc -l

grep -v "#" all.vcf | awk '{if($1=="chr2R" && $2 >=10000 && $2 <=20000) print}'

> extracted_records

af://n608
af://n609

(note that in this case the chromosome condition $1=="chr2R" is not really needed, because our
VCF file only contains data for chr2R, however, it would be necessary for a more general input).
To quickly find out how many variants passed filtering, simply type

awk '{if($7=="PASS") print}' all.filtered.vcf | wc -l

More complex analysis and operations on VCF files can be accomplished using specialized
software tools, such as those contained in GATK package and those from the vcftools package
(independent from GATK).

Using GATK4’s Concordance and GenotypeConcordance tools

GATK4 offers interesting functions, Concordance and GenotypeConcordance, to summarize
various statistics of a variant set and compare it to another variant set obtained from the same
data, but with a different method, for example. A script var_compar.sh , based on this function,
will compare any two VCF files, e.g., all.vcf and fb.vcf (obtained using GATK4 and
FreeBayes, respectively):

The command above will generate four file fb.all.comp.site_summary with the site
concordance summary, and three other files
(fb.all.comp.genotype_concordance_contingency_metrics ,
fb.all.comp.genotype_concordance_detail_metrics ,
fb.all.comp.genotype_concordance_summary_metrics) with more detailed analysis of
genotype concordance for sample ZW155. Some of these files have long lines and are best
viewed in Excel (after being transferred to your laptop).

Using vcftools

vcftools (A. Auton, A. Amrcketta, https://vcftools.github.io/index.html) is a popular toolkit for
analyzing and manipulating VCF files. Here are some usage examples (try them on your VCF files):

Obtain basic VCF statistics (number of samples and variant sites):

Extract subset of variants (chromosome chr2R, between positions 1M and 2M) and write them to
a new VCF file

Get allele frequencies for all variants and write them to a file

Compare two VCF files (will print out various kinds of compare info in files fb.all.compare.*):

./scripts/var_compar.sh fb all ZW155 >& var_compar.log &

vcftools --vcf all.vcf

vcftools --vcf all.vcf --chr chr2R --from-bp 1000000 --to-bp 2000000 --recode --

recode-INFO-all -c > subset.vcf

vcftools --vcf all.vcf --freq -c > all.freqs

af://n618
af://n623
https://vcftools.github.io/index.html

vcftools --vcf fb.vcf --diff all.vcf --out fb.all.compare

	Calling short variants with GATK4: exercise instructions for BioHPC Cloud computers
	Workshop contact
	Data used in the exercise
	Log in to your workshop machine
	General tips
	Fetch input files and scripts to your local scratch directory
	Prepare reference genome
	Align reads to reference
	Sort and mark duplicates
	Visualize the alignments using IGV
	Run GATK HaplotypeCaller on individual samples
	Have you completed the HaplotypeCaller step for all four samples?
	Joint variant calling with GenotypeGVCFs
	Have you completed the BWA alignment step for all four samples?
	Joint variant calling using FreeBayes
	Filter variants
	Basic stats and comparison of variant sets
	Using Linux commands
	Using GATK4’s Concordance and GenotypeConcordance tools
	Using vcftools

