
Variant calling: Part 1
Robert Bukowski, Qi Sun, Minghui Wang

Bioinformatics Facility
Institute of Biotechnology

http://cbsu.tc.cornell.edu/lab/doc/Variant_workshop_Part1.pdfSlides:
http://cbsu.tc.cornell.edu/lab/doc/Variant_exercise1.pdfExercise instructions:
bukowski@cornell.eduWorkshop contact:

Individual 1 Individual 2 Individual 3 Short reads (or read pairs)

Align reads to a reference…

Expected output: table of genotypes
Variant site chrand position Indiv1 Indiv2 Indiv3 ….
site1 AA AA AC …
site2 GT missing TT …
… … … … …
siteN CC CC AA …

Table above is very schematic. In reality, genotypes are recorded in VCF format (Variant Call Format)
Additional information about variants is also produced and recorded in VCF (such as call quality info)
More about VCF – next week

State of the art: GATK from Broad Institute

GATK
• Developed in conjunction with 1000 (human) genomes project
• Package of command-line tools (written in Java)
• GATK pipelines rely on another Java package, PICARD (also from Broad) for processing of alignment files
• Contains multiple tools for

• NGS data processing
• Genotyping and variant discovery
• Variant filtering and evaluation

• Still very specific to organism under study – some harder than others
• Massively parallel processing on HPC clusters

• Ever evolving and adapting to emerging sequencing technologies
• GATK development led a to protocol referred to as Best practices for calling variants with the GATK

Where to go for detailed documentation of GATK and PICARD tools

GATK

http://broadinstitute.github.io/picard/
PICARD
https://www.broadinstitute.org/gatk/guide/tooldocs/

Best Practices for DNA-Seq variant calling

No longer recommended

Best Practices for DNA-Seq variant calling
What are the colored tabs?
Each tab stands for a FASTQ file (SE case) or a pair of FASTQ files (PE case) with reads from one sample and one Illumina lane
• A lane may contain a single sample, OR…
• A lane may contain reads from multiple samples (multiplexing)
Reads from one sample may be in
• One file, OR…..
• Multiple files

Generally, read pre-processing is done separately for each FASTQ file or pair, especially if files contain a lot of data. However:
• Mark Duplicates works best if given all reads from a given library (sometimes scattered among files)
• Indel realignment works best with all reads from all samples (cohort)
Meeting these optimal conditions is usually not practical (large computational cost), so compromises have to be made

Align
Mark Duplicates
Realign
Recalibrate

lane1.fq lane2.fq

lane1.dedup.realign.recal.bam
lane2.dedup.realign.recal.bam

… laneN.fq

laneN.dedup.realign.recal.bam
…

sample1.bam
sample2.bam
sampleM.bam…

Merge over lanes by sample Mark Duplicates
Realign

Done per library (based on LB field of Read Group)

sample1.dedup.realign.bam
sample2.dedup.realign.bam
sampleM.dedup.realign.bam…

Realign

cohort.bam
Merge over samples

Computationally impractical

Typical read preparation pipeline: one sample in a lane

Variant calling

Align
Mark Duplicates

Realign
Recalibrate

L1_S1.fq S1.dedup.realign.recal.bam
S2.dedup.realign.recal.bam

Assume 2 samples (S1, S2) in 2 multiplexed lanes L1, L2
L1_S2.fq L2_S1.fq L2_S2.fq

L1_S1.dedup.bam, L1_S2.dedup.bam, L2_S1.dedup.bam, L2_S2.dedup.bam

Typical read preparation pipeline: multiplexed lanes

Merge over lanes
S1.bam, S2.bam

Mark Duplicates
Duplicates detected across entire libararies!

Realign

cohort.bam
Merge over samples

Computationally impractical !

Variant calling

Input: reads in FASTQ format

@61DFRAAXX100204:1:100:10494:3070
ACTGCATCCTGGAAAGAATCAATGGTGGCCGGAAAGTGTTTTTCAAATACAAGAGTGACAATGTGCCCTGTTGTTT
 + 
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCACCCCCCCCCCCCCCCCCCCCCCCC

FASTQ format: 4 lines per read (“@name”, sequence, “+”, quality string)

ASCII code of a letter in quality string - 33 equals Phred quality score of the corresponding base.older Illumina platforms used 64 instead of 33
For example, “C” stands for: 67 – 33 = 34, i.e., probability of the base (here: G) being miscalled is 10-3.4.
Base qualities are typically used in genotype likelihood models – they better be accurate!

Input: paired-end (PE) reads
Paired-end case: we have two “parallel” FASTQ files – one for “left” and another for “right” end of the fragment:

First sequence in “left” file
@HWI-ST896:156:D0JFYACXX:5:1101:1652:2132 1:N:0:GATCAG
ACTGCATCCTGGAAAGAATCAATGGTGGCCGGAAAGTGTTTTTCAAATACAAGAGTGACAATGTGCCCTGTTGTTT
 + 
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCACCCCCCCCCCCCCCCCCCCCCCCC
First sequence in “right” file
@HWI-ST896:156:D0JFYACXX:5:1101:1652:2132 2:N:0:GATCAG
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACATTTTCTCAGTATTCCATCTAGCTGC
 + 
C < CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCCCCCCCCCCCCCCACCCCCACCC = 

The two ends come from opposite strands of the fragment being sequenced

End 1 End 2

Read L
Strand 1
Strand 2

Read R

Illumina adapter

Read L
Strand 1
Strand 2

Read R

Illumina adapter
Read-through: sequenced reads cut into adapters
Adapter remnants should be removed

Sequencing long fragment

Sequencing short fragment

Read quality assessment with fastqc

Run the command: fastqc my_file.fastq.gz to generate html report

Pre-alignment read clean-up
Trimmomatic: A flexible read trimming tool for Illumina NGS data (Bolger et al., http://www.usadellab.org/cms/?page=trimmomatic)
java -jar trimmomatic.jar PE -threads 2 -phred33 \
reads_1.fastq.gz reads_2.fastq.gz \
reads_P_1.fastq.gz reads_U_1.fastq.gz \
reads_P_2.fastq.gz reads_U_2.fastq.gz \
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:4:5 LEADING:5 TRAILING:5 MINLEN:25

Filtering operations (in order specified) performed on each read:
• Remove Illumina adapters (those in file TruSeq3-PE.fa) using “palindrome” algorithm (will keep only one copy of a “read-through”)
• Clip read when average base quality over a 4bp sliding window drops below 5
• Clip leading and trailing bases if base quality below 5
• Skip read if shorter than 25bp

“Best Practices” for DNA-Seq variant calling

Alignment is fundamentally hard……
• Genomes being re-sequenced not sufficiently similar to reference

• Not enough reads will be mapped
• Reads originating from parts of genome absent from reference will align somewhere anyway, leading to false SNPs

• Some reads cannot be mapped unambiguously in a single location (have low Mapping Quality)
• if reads too short
• reads originating from paralogs or repetitive regions
• Having paired-end (PE) data helps

• Alignment of some reads may be ambiguous even if placement on reference correct (SNPs vs indels)
• Need local multi-read re-alignment or local haplotype assembly (expensive!)

• Sequencing errors
• Easier to handle and/or build into variant-calling models

Picking good aligner is important

From: Konrad Paszkiewicz, University of Exeter, http://evomics.org/2014/01/alignment-methods/

Performance of various aligners on simulated short reads (SE) from human genome
% m

app
ed r

ead
s

From: Li (Broad Institute), http://arxiv.org/pdf/1303.3997v2.pdf

Performance of various aligners on simulated short reads (PE) from human genome
% m

app
ed r

ead
s

From: Li (Broad Institute), http://arxiv.org/pdf/1303.3997v2.pdf

BWA mem – aligner of choice in GATK
• BWA = Burrows Wheeler Aligner (uses BW transform to compress data)
• MEM = Maximal Exact Match (how alignment “seeds” are chosen)
• Performs local alignment (rather than end-over-end)

• Can clip ends of reads, if they do not match
• Can split a read into pieces, mapping each separately (the best aligned piece is then the primary alignment)

• Performs gapped alignment
• Utilizes PE reads to improve mapping
• Reports only one alignment for each read

• If ambiguous, one of the equivalent best locations is chosen at random
• Ambiguously mapped reads are reported with low Mapping Quality

• Works well for reads 70bp to several Mbp
• Time scales linearly with the size of query sequence (at least for exact matches)
• Moderate memory requirement (few GB of RAM to hold reference genome)

Li H. and Durbin R. To cite BWA: Li H. and Durbin R. (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25:1754-60. [PMID: 19451168]

Running BWA mem: index reference genome
First things first: Index reference genome

samtools faidx genome.fa
java -jar $PICARDDIR/picard.jar CreateSequenceDictionary R=genome.fa O=genome.dict

bwa index genome.fa
Will create a bunch of BWA index files: genome.fa.ann, genome.fa.bwt, genome.fa.fai,
genome.fa.pac, genome.fa.sa

Will create two auxiliary files, genome.fa.fai and genome.dict containing summary information about lengths of chromosomes and where they start. Both files are needed by GATK (not by BWA aligner)
This step has to be done only once for each reference genome. The index files may be stored in a separate directory and reused.

Running BWA mem: align your reads
bwa mem -M -t 4 \
-R '@RG\tID:C6C0TANXX_2\tSM:ZW177\tLB:ZW177lib\tPL:ILLUMINA' \
./genome_index/genome.fa \
sample1reads_1.fastq.gz sample1reads_2.fastq.gz > sample1.sam

For PE reads:

(SE version the same – just specify one read file instead of two)
What does it all mean:
•

-M: if a read is split (different parts map to different places) mark all parts other than main as “secondary alignment” (technicality, but important for GATK which ignores secondary alignments)
• -R: add Read Group description (more about it in a minute)
• -t 4: run of 4 CPU cores. If CPUs available, bwa mem scales well up to about 12 CPU cores.
• ./genome_index/genome.fa: points to BWA index files (genome.fa.*)
• Output (i.e., alignments) will be written to the file sample1.sam. As the name suggests, it will be in SAM format.

SAM to BAM conversion, sorting and indexing

SAM format is wasteful (text files take a lot of space on disk) – better to convert it to a more compact, binary format called BAM. Typically, we also sort the alignments over genomic coordinate and index them:

SAM = Sequence Alignment/MapBAM = Binary Alignment/Map

Indexing will create a small file called sample1.sorted.bam.bai (or sample1.sorted.bai)
It is a “table of contents” to quickly point from genomic coordinates to overlapping alignment records

samtools view –Sb sample1.sam > sample1.bam
samtool sort sample1.bam –o sample1.sorted.bam
samtools index sample1.sorted.bam
java -jar SortSam.jar INPUT=sampl1.sam \
OUTPUT=sample1.sorted.bamSORT_ORDER=coordinate
java -jar BuildBamIndex.jar INPUT=

Using samtools

Using PICARD

Shortcut: avoid generating large SAM files
bwa mem [options] reads_1.fq.gz reads_2.fq.gz | samtools view –Sb - > sample.bam

Output from bwa mem (a large text file in SAM format written to STDOUT) is piped into the samtoolscommand which converts it into (much smaller) file in BAM format “on the fly”.
No more large SAM file to store and handle!

Pipe operator: passes STDOUT of command on the left to STDIN of command on the right
“-” tells samtools to take input from STDIN

Back to BWA mem command: define Read Group
-R '@RG\tID:C6C0TANXX_2\tSM:ZW177\tLB:ZW177lib\tPL:ILLUMINA'

What will this option do?
The SAM/BAM file header will contain a line (TAB-delimited) defining the group:
@RG ID:C6C0TANXX_2 SM:ZW177 LB:ZW177lib PL:ILLUMINA

Unique ID of a collection of reads sequenced together, typically: Illumina lane (+barcode or sample)

Sample name DNA prep Libray ID Sequencing platform

Each alignment record will be marked with Read Group ID (here: C6C0TANXX_2), so that programs in downstream analysis know where the read is from.

Read groups, sample and library IDs are important for GATK operation!

Each READ GROUP contains reads from one sample and one libraryA libray may be sequenced multiple times (on different lanes)Sample may be sequenced multiple times, on different lanes and from different libraries

Read Group assignment: multiplexed lanes
One flowcell: HL5WNCCXX, two lanes (2 and 3), each with samples A and B (2-plex) from library my_lib

@RG ID:HL5WNCCXX_2_A SM:A LB:mylib PL:ILLUMINA@RG ID:HL5WNCCXX_3_A SM:A LB:mylib PL:ILLUMINA
@RG ID:HL5WNCCXX_2_B SM:B LB:mylib PL:ILLUMINA@RG ID:HL5WNCCXX_3_B SM:B LB:mylib PL:ILLUMINA

java -jar $PICARDDIR/picard.jar \
AddOrReplaceReadGroup \
INPUT=input.bam \
OUTPUT=input_with_rgroup.bam \
SORT_ORDER=coordinate \
RGSM=my_sample \
RGPU=none \
RGID=my_groupID \
RGLB=my_library \
RGPL=Illumina

Forgot to add Read Group at alignment step? No problem, just use PICARD tool:

Anatomy of a SAM file
@SQ SN:chr2L LN:23011544
@SQ SN:chr2LHet LN:368872
@SQ SN:chr2R LN:21146708
@SQ SN:chr2RHet LN:3288761
@SQ SN:chr3L LN:24543557
@SQ SN:chr3LHet LN:2555491
@SQ SN:chr3R LN:27905053
@SQ SN:chr3RHet LN:2517507
@SQ SN:chr4 LN:1351857
@SQ SN:chrM LN:19517
@SQ SN:chrX LN:22422827
@SQ SN:chrXHet LN:204112
@SQ SN:chrYHet LN:347038
@RG ID:SRR1663609 SM:ZW177 LB:ZW155 PL:ILLUMINA
@PG ID:bwa PN:bwa VN:0.7.8-r455 CL:bwa mem -M -t 4 -R @RG\tID:SRR1663609\tSM:ZW177\tLB:ZW155\tPL:ILLUMINA
/local_data/Drosophila_melanogaster_dm3/BWAIndex/genome.fa SRR1663609_1.fastq.gz SRR1663609_2
.fastq.gz
SRR1663609.1 97 chrX 2051224 60 6M54S chrYHet 4586 0 GGATCGTGAT… gggfgg[gfg… NM:i:0 MD:Z:46 AS:i:46 XS:i:0 RG:Z:SRR1663609
SRR1663609.1 145 chrYHet 4586 0 100M chrX 2051224 0 ACTTCTCTTC… BBBBBbdd]c… NM:i:0 MD:Z:100 AS:i:100 XS:i:99 RG:Z:SRR1663609
SRR1663609.2 65 chr3RHet 2308288 0 100M chrYHet 4712 0 AGAAGAGAAG… Y_b`_ccTccB… NM:i:0 MD:Z:100 AS:i:100 XS:i:100 RG:Z:SRR1663609
SRR1663609.2 129 chrYHet 4712 60 38M62S chr3RHet 2308288 0 CTTCTCTTCT… eeeae`edee… NM:i:1 MD:Z:17T20 AS:i:33 XS:i:21 RG:Z:SRR1663609
SRR1663609.3 65 chr3RHet 2308278 0 100M chrYHet 4649 0 AGAAGAGAAG… ffffffffff… NM:i:0 MD:Z:100 AS:i:100 XS:i:100 RG:Z:SRR1663609
SRR1663609.3 129 chrYHet 4649 0 41M59S chr3RHet 2308278 0 TCTCTTCTCT… fffffffff… NM:i:0 MD:Z:41 AS:i:41 XS:i:41 RG:Z:SRR1663609
SA:Z:chrX,5036484,-,16S41M43S,0,2;
SRR1663609.3 401 chrX 5036484 0 16H41M43H chr3RHet 2308278 0 AAAAGAAGAA… BBBBBBBBBB… NM:i:2 MD:Z:7A4G28 AS:i:31 XS:i:28 RG:Z:SRR1663609
SA:Z:chrYHet,4649,+,41M59S,0,0;
SRR1663609.4 99 chr3RHet 854491 0 100M = 854876 485 AGAAGAAGAA… BBBBBBBBBB… NM:i:0 MD:Z:100 AS:i:100 XS:i:100 RG:Z:SRR1663609
SRR1663609.4 147 chr3RHet 854876 0 100M = 854491 -485 GAGAAGAGAA… ffffffffff… NM:i:0 MD:Z:100 AS:i:100 XS:i:100 RG:Z:SRR1663609

Header

read name

flag

chr

position on chr

mapping quality
CIGAR string

chr of mate
Read sequence

frag length
Read qualities

(shortened for clarity)

edit dist
match str

best alnscore
next alnscore

Read group
mate position on chr TAGS

Anatomy of a SAM file
• Position: 1-based position of the first read base on the chromosome
• Mapping Quality: phred probability the read is in the wrong place (i.e., the higher MAPQ the better)
• CIGAR: Compact Idiosyncratic Gapped Alignment Report – shows how many indels, how many bases soft- or hard-clipped

• 100M whole read aligned (no clips), no indels
• 16H41M43H 16 bp clipped from the beginning of the read, 43 bp clipped from the end, 41 remaining bases aligned with no indels
• 52S48M 52 bp soft-clipped from the beginning (i.e., these bases are still shown, but do not take part in alignment), the other 48 aligned without indel
• 3M1D2M1I1M 3 bases aligned followed by 1 base deleted, 2 next ones aligned, 1 base inserted and the last one aligned

• Fragment length: distance in bp between positions of 1st bases of the two reads in a pair

Anatomy of a SAM file, cnt
Tags: some universal, others supplied by a particular aligner and specific to itHere are the ones produced by BWA mem:
TAG Example What it means
NM NM:i:1 Number of mismatches (integer value)
MD MD:Z:17T20 17 matches, then some other base in place of T, then 20 more matches (counting from beginning of read)
AS AS:i:100 Alignment score 100 (integer)
XS XS:i:21 Second-best alignment score 21 (integer)
RG RG:Z:SRR166309 Read Group ID
SA SA:Z:chrYHet,4649,+,41M59S,0,0 Location and tags of second-besthit

What is “flag”?
Let’s covert the “flag” number to binary representation. For example,
Flag (decimal) Flag (hex) Flag (binary)--145 0x91 10010001
129 0x81 10000001
97 0x61 1100001

The positon (counted from right to left) in binary number corresponds to some property of this read’s alignment.
An “1” in a given position says the read has the corresponding property
A “0” means the read does not have the corresponding property

000000000001
000000000010
000000000100
000000001000
000000010000
000000100000
000001000000
000010000000
000100000000
001000000000
010000000000
100000000000

HexBinary

What bit flags mean

Flag decoded
145 = 00010010001
• Read is a part of a fragment in sequencing (000000000001) – they all do, because our data is all PE reads
• Read aligns to reference as reverse complement (00000010000)
• Read is the second end of the fragment (00010000000)

In alignment of SE reads, the only flags possible are 0 (mapped on forward strand), 16 (mapped to reverse strand), or 4 (unmapped)

Looking into a BAM file: samtools
BAM files are binary – special tool is needed to look inside

samtools view –h myfile.bam | more prints the file in SAM format (i.e., human-readable) to screen page by page; skip –h to omit header lines
samtools view –c myfile.bamprints the number of records (alignments) in the file; for BWA mem it may be larger than the number of reads!
samtools view –f 4 myfile.bamExtracts records with a given flag – here: flag 4 (unmapped); prints them to screen

samtools flagstat
SRR1663609.sorted.dedup.realigned.fixmate.bam
10201772 + 0 in total (QC-passed reads + QC-failed reads)
74334 + 0 secondary
0 + 0 supplimentary
679571 + 0 duplicates
9685912 + 0 mapped (94.94%:-nan%)
10127438 + 0 paired in sequencing
5063719 + 0 read1
5063719 + 0 read2
8747736 + 0 properly paired (86.38%:-nan%)
9500218 + 0 with itself and mate mapped
111360 + 0 singletons (1.10%:-nan%)
252790 + 0 with mate mapped to a different chr
89859 + 0 with mate mapped to a different chr (mapQ>=5)

samtools flagstat myfile.bamDisplays basic alignment stats based on flag
Examples:

Type samtools, or go to http://samtools.sourceforge.net/ for more options

Looking into a BAM file: IGV viewer

IGV is a Java program available on BioHPC machines. Can be installed on laptop, too.

Look at multiple BAM files
Zoom in and out
Various color-coding schemes
Can load genome annotation track

http://www.broadinstitute.org/igv/home

“Best Practices” for DNA-Seq variant calling

Duplicate reads (fragments)
• Optical duplicates: (Illumina) generated when a single cluster of reads is part of two adjacent tiles' on the same slide and used to compute two read calls separately

• Very similar in sequence (except sequencing errors).
• Identified where the first, say, 50 bases are identical between two reads and the read’s coordinates are close

• Library duplicates (aka PCR duplicates): generated when the original sample is pre-amplified to such extent that initial unique targets are PCR replicated prior to library preparation and will lead to several independent spots on the Illumina slide.
• do not have to be adjacent on the slide
• share a very high level of sequence identity
• align to the same place on reference
• identified from alignment to reference

Why duplicates are bad for variant calling

How removing (marking) duplicates works

Removing (marking) duplicates with PICARD
java -jar $PICARDDIR/picard.jar \
MarkDuplicates \
INPUT=sample1.sorted.bam \
OUTPUT=sample1.sorted.dedup.bam \
METRICS_FILE=sample1.sorted.dedup.metrics.txt

• The metrics file will contain some stats about the de-duping
• In the resulting BAM file, only one fragment from each duplicate group survives unchanged, other duplicate fragments are given a flag 0x400 and will not be used downstream.
• Optimally, detection and marking of duplicate fragments should be done per library, i.e., over all read groups corresponding to a given library.
• In practice, often sufficient to do it per lane (read group).

“Best Practices” for DNA-Seq variant calling

CTTTAGTTTCTTTT----CTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTT----GCCGCTTTCTTTCTTTCTT
CTTTAGTTTCTTTT----GCCGCTTTCTTTCTTTCTT
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC

CTTTAGTTTCTTTT----CTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTT
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTT
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC
CTTTAGTTTCTTTTGCCGCTTTCTTTCTTTCTTTTTTTTTAAGTCTCCCTC

Reference

Reads

Reads

Reference

For these reads, aligner preferred to make a few SNPs rather than insertion
For these reads, insertion was a better choice

This looks better !

Ambiguity of alignment at indel sites

Only seen after aligning all (at least some) reads!

Aligner, like BWA, works on one read (fragment) at a time, does not see a bigger picture…)
But we can try to shift things around a bit:

Ambiguity of alignment: around adjacent SNPs

AAGCGTCG
AAGCGTCG
AAGCGTCG
AAGCGTCG
AAGCTACG
AAGCTACG
AAGCTACG

AAG---CGTCG
AAG---CGTCG
AAG---CGTCG
AAG---CGTCG
AAGCTACG
AAGCTACG
AAGCTACG

What is better: 3 adjacent SNPs or an insertion?

Reference Reference

Rea
ds

Rea
ds

...CCCATTTTTTTCTAAAAGCTGGCAT...
CCCATTTTTTCTAAAAGCTGGCAT...
CCCATTTTTTCTAAAAGCTGGCAT...
CCCATTTTTTCTAAAAGCTGGCAT...

...CCCATTTTTTCTAAAAA

...CCCATTTTTTCTAAAAA

...CCCATTTTTTCTAAAAA

...CCCATTTTTTTCTAAAAGCTGGCAT...
CCCA-TTTTTTCTAAAAGCTGGCAT...
CCCA-TTTTTTCTAAAAGCTGGCAT...
CCCA-TTTTTTCTAAAAGCTGGCAT...

...CCCA-TTTTTTCTAAAAA

...CCCA-TTTTTTCTAAAAA

...CCCA-TTTTTTCTAAAAA

Reference Reference

Rea
ds

Rea
ds

Ambiguity of alignment: around homo-polymer runs flanked by adjacent SNPs

Remedy: local realignment

java -jar GenomeAnalysisTK.jar \
-T RealignerTargetCreator \
-nt 4 \
-R refgenome.fa \
-I sample1.sorted.dedup.bam \
-o realign.intervals

java -jar GenomeAnalysisTK.jar \
-T RealignerTargetCreator \
-R fergenome.fa \
-known known_indels.vcf
-o realign.intervals

Generate intervals of interest from sample alignments

Generate intervals of interest from known indels (once – will be good for all samples)

OR

java -jar GenomeAnalysisTK.jar \
-T IndelRealigner \
-R refgenome.fa\
-targetIntervals realign.intervals \
-I sample1.sorted.dedup.bam \
-o sample1.sorted.dedup.realigned.bam

Realign (multiple sequence alignment)

java -jar FixMateInformation.jar \
INPUT=sample1.sorted.dedup.realigned.bam \
OUTPUT=sample1.sorted.dedup.realigned.fixmate.bam \
SO=coordinate \
CREATE_INDEX=true

Fix mate pair info in BAM(PICARD)

Local re-alignment is time-consuming!
Re-alignment no longer recommended if the genotyping method used downstream involves local haplotype assembly

HaplotypeCaller (from GATK)FreeBayesre-alignment implicit in the assembly algorithm

Still needed if the genotypes called from allelic depths at individual sites
UnifiedGenotyper (GATK)samtools

Local realignment: when is it needed?

“Best Practices” for DNA-Seq variant calling

Base quality score recalibration
• Define “bins” in terms of covariates:

• Lane
• Original quality score
• Machine cycle (position on read)
• Sequencing context (what bases are around)

• Scan all aligned reads (i.e., bases) in a given read group
• Classify each base to a “bin”; decide whether it is a mismatch

• In each bin
• count the number of mismatches (where read base != reference base)
• Calculate empirical quality score from #mismatches/#all_observed_bases; compare to original

• Compile a database of corrections
• Scan all reads (i.e., bases) again (in a BAM file)
• For each base

• Classify into a bin
• Apply bin-specific correction to base quality scores (based on the database collected in previous step)

Caveats:
• Local realignment should be done before recalibration
• Known variation (SNPs and indels) have to be excluded (not a source of errors)

Base quality scores reported by a sequencer may be inaccurate and biased

https://www.broadinstitute.org/gatk/guide/topic?name=methods

Base quality score recalibration
java -jar GenomeAnalysisTK.jar \
-T BaseRecalibrator \
-R refgenome.fasta\
-knownSites known_snps_indels.vcf \
-I sample1.sorted.dedup.realigned.fixmate.bam \
-o sample1.sorted.dedup.realigned.fixmate.recal_data.table \
-cov ReadGroupCovariate \
-cov QualityScoreCovariate \
-cov CycleCovariate

java -jar GenomeAnalysisTK.jar \
-T PrintReads \
-R refgenome.fasta \
-BQSR sample1.sorted.dedup.realigned.fixmate.recal_data.table \
-I sample1.sorted.dedup.realigned.fixmate.bam \
-o sample1.sorted.dedup.realigned.fixmate.recal.bam

Collect mismatch statistics in bins

Recalibrate base qualities in the BAM file

This is what recalibration results may look like

Running things in parallel
Multithreading in BWA mem works well up to 10-15 CPUs. On a machine with 24 CPUS, run 2 BWA mem jobs concurrently, each on 10 threads (bwa mem –t 10 …) .

Mark Duplicates
Realign

Recalibrate

Alignment

Multithreading non-existent or not too efficient – best to execute this part of pipeline as multiple independent jobs (one per lane or sample/lane), run in parallel on one or multiple machines. Required memory and disk access bandwidth will determine the optimal number of concurrent jobs per machine. Experiment!

