Practical Linux Examples

- Processing large text files
- Working with lots of files

Qi Sun Bioinformatics Facility Cornell University

• Read file:

cat D7RACXX.fastq

- Select lines that contain the string "AGATCGGAAGAGC" grep AGATCGGAAGAGC
- Count the selected lines

wc -l

```
SRR836349.12 HWI-ST1085:39:D0D7RACXX:1:1101:4020:1994 length=100
CCAGTCTGCGTCCGCCTAGGCCCGGTCGACGAGCCTGGGGCCAAGGTGGCGTACCAGACCAGCGTCAGCATCAC(
SRR836349.12 HWI-ST1085:39:D0D7RACXX:1:1101:4020:1994 length=100
4=DFFFFGHAHHTTTTTTTTTTTTTTTTTTTTTTHHHHFFCCCCC@CBCCBCC
SRR836349.13 HWI-ST1085:39:D0D7RACXX:1:1101:4438:1991 length=100
TACGGACAGCTCGGTGCACTGCTTCAAAAACTGCCGGATGTAGTCCCACAGGGATTCCCCTGGCTG
SRR836349.13 HWI-ST1085:39:D0D7RACXX:1:1101:4438:1991 length=100
SRR836349.14 HWI-ST1085:39:D0D7RACXX:1:1101:4582:1998 length=100
SRR836349.14 HWI-ST1085:39:D0D7RACXX:1:1101:4582:1998 length=100
SRR836349.15 HWI-ST1085:39:D0D7RACXX:1:1101:4981:1992 length=100
SRR836349.15 HWI-ST1085:39:D0D7RACXX:1:1101:4981:1992 length=100
SRR836349.16 HWI-ST1085:39:D0D7RACXX:1:1101:4834:1996 length=100
AGGACAGCCGGACTTAATGATGAAGAGATGGCTCTCATCATCAAGAGATTCAAGACGGCGCTAAAAAGGTCACAAGGGGCAG
SRR836349.16 HWI-ST1085:39:D0D7RACXX:1:1101:4834:1996 length=100
SRR836349.17 HWI-ST1085:39:D0D7RACXX:1:1101:5373:1997 length=100
AGGACTGCGGCCGCCGTGAGCGTCATCAGATCGCCGGGGCTTCTGACGCCAACCGCGGCCTGCACGGCGGC
SRR836349.17 HWI-ST1085:39:D0D7RACXX:1:1101:5373:1997 length=100
SRR836349.18 HWI-ST1085:39:D0D7RACXX:1:1101:5308:1997 length=100
TAGCCAGCGACCGCTACGTGGCAGTCGTCGTGAGGACACCTAATCCTCAATTCGCATAAATATTCACCTACACCC
SRR836349.18 HWI-ST1085:39:D0D7RACXX:1:1101:5308:1997 length=100
4=DDFFFHHHHHJJJJJJJJJJJJJJJJJJJIHIGIIGGIJHGHHFFFFFFEEEEDDDDDDDDEEEFDEDDDDDACCBBDDD
SRR836349.19 HWI-ST1085:39:D0D7RACXX:1:1101:5732:1994 length=100
ATCTCTGCTTGATTAGAAAAAGGAGATCCACGGCCTGTGAGTAACTACGCCATGTTACGAATCACAG<mark>AGATCGGA</mark>
SRR836349.19 HWI-ST1085:39:D0D7RACXX:1:1101:5732:1994 length=100
SRR836349.20 HWI-ST1085:39:D0D7RACXX:1:1101:5623:1995 length=100
TCCTGGACTGCACCCTTAGGCGACTTCTGCGCGGATAGTCTTCGCGATAGACATTGGATTTTCTCGCACTTGTTGTGCTTAGTCCGG
SRR836349.20 HWI-ST1085:39:D0D7RACXX:1:1101:5623:1995 length=100
SRR836349.21 HWI-ST1085:39:D0D7RACXX:1:1101:6484:1991 length=100
GAAGACTGCGACTTACCGTGTTGGAGTTGTGTAGCCACCGTGAAACACCACACTGCGCGCCGCCGCCACCACC
SRR836349.21 HWI-ST1085:39:D0D7RACXX:1:1101:6484:1991 length=100
SRR836349.22 HWI-ST1085:39:D0D7RACXX:1:1101:6274:1992 length=100
ATATGCCAGCTAATCGTGTGGCTTTAGAAGCCTGTGTACAAGCTCGTAACGAAGGGCGCGATCTTGCTCGTGAAGG
SRR836349.22 HWI-ST1085:39:D0D7RACXX:1:1101:6274:1992 length=100
SRR836349.23 HWI-ST1085:39:D0D7RACXX:1:1101:6437:1995 length=100
GCTGATCAGCTCCCCGTTGTCGCCGGCGACGACCTGGCGCTG
                                      AGAGC GGTTCAGCAGGAATGCCGAGACGGATCTCG
SRR836349.23 HWI-ST1085:39:D0D7RACXX:1:1101:6437:1995 length=100
11BDDDDAFBFHHGIIAFGEFHGGHI<D<FG8',5?B(998;80:00B7258<9:05-2(:3+8?0(44::>&099(0&09CC0))
SRR836349.24 HWI-ST1085:39:D0D7RACXX:1:1101:7042:1998 length=100
SRR836349.24 HWI-ST1085:39:D0D7RACXX:1:1101:7042:1998 length=100
SRR836349.25 HWI-ST1085:39:D0D7RACXX:1:1101:7402:1992 length=100
```

cat D7RACXX.fastq

CGTCCAAGGTATTTCGTCTT

DDDDDDDDDCCEEEEDDBD?

<mark>C</mark>GGTTCAGCAGGAATGCCGA

@00000000000000000@

TAGTCCGGCTGAGATCGGAA

CCCCCCBBBBBBA@:@CBBBB

GAGTGTTTCCGCCGCCGTGG

DDD:ACEDDDDDDDDDDDDDDDD

AATGAAATTATCAAAGCAGAGA

To get a quick answer, you can estimate the percentage based on the first 40,000 lines

cat DeD7RACXX.fastq head -n 40000 grep AGATCGGAAGAGC wc -l

cat DeD7RACXX.fastq head -n 40000 grep AGATCGGAAGAGC

VS

cat DeD7RACXX.fastq grep AGATCGGAAGAGC head -n 40000

Use "\" to separate the command into multiple lines. Make sure no space after "\"

4=DFFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJGHIJFGIJEHIGEEEFDBBBBDBBBDBBBDDDDD@DDDDDDDDDDDDDDDDD
SRR836349.12 HWI-ST1085:39:D0D7RACXX:1:1101:4020:1994 length=100
${\tt CCAGTCTGCGTCCGCCTAGGCCCGGTCGACGACGACGCCTGGGGCCAAGGTGGCGTACCAGCGTCAGCATCACCGGCCACGTCTTCAAGGGCATCCTG$
SRR836349.12 HWI-ST1085:39:D0D7RACXX:1:1101:4020:1994 length=100
4=DFFFFGHAHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
SRR836349.13 HWI-ST1085:39:D0D7RACXX:1:1101:4438:1991 length=100
TACGGACAGCTCGGTGCACTGCTTCAAAAACTGCCGGATGTAGTCCCACAGGGATTCCCCTGGCTG <mark>AGATCGGAAGAGC</mark> GGTTCAGCAGGAATGCCGAG
SRR836349.13 HWI-ST1085:39:D0D7RACXX:1:1101:4438:1991 length=100
1 = DDFFFHHHHHJJGHJJJJJJJJJJJJJJJJJJJJJJJJJJ
SRR836349.14 HWI-ST1085:39:D0D7RACXX:1:1101:4582:1998 length=100
TATTACAGCAGGCGCGCGCGAGAGAGAGAGGAGAGGAGGAGGAG
SRR836349.14 HWI-ST1085:39:D0D7RACXX:1:1101:4582:1998 length=100
1=DFFFFGHHHHJJJJJJJJGIGIFHFH=BGGHIIJGHGHHGHFDCDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
SRR836349.15 HWI-ST1085:39:D0D7RACXX:1:1101:4981:1992 length=100
${\tt CGGATATCTGCGACAGCTTGCTGTAGTACAGTACAGGTACGGTACGTAC$
SRR836349.15 HWI-ST1085:39:D0D7RACXX:1:1101:4981:1992 length=100
1=DDDDDDHHAHHIIIIIIIIIIIIIIIIIIIIIIIIIIII
SRR836349.16 HWI-ST1085:39:D0D7RACXX:1:1101:4834:1996 length=100
AGGACAGCCGGACTTAATGATGAAGAGATGGCTCTCATCATCAAGAGATTCAAGACGGCGCTAAAAGGTCACAAGGGGCCAG <mark>AGATCGGAAGAGC</mark> GGTTC
SRR836349.16 HWI-ST1085:39:D0D7RACXX:1:1101:4834:1996 length=100
1=DDDDDDHHDHHIIIIIIIIIIIIIIIIIIIIIIIIIII
SRR836349.17 HWI-ST1085:39:D0D7RACXX:1:1101:5373:1997 length=100
AGGACTGCGGCCGCCGTGAGCGTCATCAGATCGCCGGGGCTTCTGACGCCGACCGCGGCCGCCGCGGCCGCCACCTGGTCGTGGCGCGCCCCCCGCG
SRR836349.17 HWI-ST1085:39:D0D7RACXX:1:1101:5373:1997 length=100
1=DFFFFHHAHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
SRR836349.18 HWI-ST1085:39:D0D7RACXX:1:1101:5308:1997 length=100
${\tt TAGCCAGCGACCGCTACGTGGCAGTCGTCGTGAGGACACCTAATCCTCAATTCGCATAAATATTCACCTACACCCCTTGCGTCCAAGGTATTTCGTCTT$
SRR836349.18 HWI-ST1085:39:D0D7RACXX:1:1101:5308:1997 length=100
4=DDFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJIHIGIIGGIJHGHHFFFFFFEEEEDDDDDDDEEEFDEDDDDDACCBBDDDDDDDDDDDDDCCEEEEDDBD?
SRR836349.19 HWI-ST1085:39:D0D7RACXX:1:1101:5732:1994 length=100
ATCTCTGCTTGATTAGAAAAAGGAGATCCACGGCCTGTGAGTAACTACGCCATGTTACGAATCACAG <mark>AGATCGGAAGAGC</mark> GGTTCAGCAGGAATGCCGA
SRR836349.19 HWI-ST1085:39:D0D7RACXX:1:1101:5732:1994 length=100
1=DDFFFHHCACFHIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
SRR836349.20 HWI-ST1085:39:D0D7RACXX:1:1101:5623:1995 length=100
TCCTGGACTGCACCCTTAGGCGACTTCTGCGCGGATAGTCTTCGCGATAGACATTGGATTTCTCGCACTTGTTGTGCTTAGTCCGGCTGAGATCGGAA
SRR836349.20 HWI-ST1085:39:D0D7RACXX:1:1101:5623:1995 length=100
4=DDDDDDHHBHHIIIIIIIIIIIIIIIIIIIIIIIIIIII
SRR836349.21 HWI-ST1085:39:D0D7RACXX:1:1101:6484:1991 length=100
GAAGACTGCGACTTACCGTGTTGGAGTTGTGTAGCCACCGTGAAACACCACACTGCGCCGCCGCCACCACAAAAGAGAGTGTTTCCGCCGCCGTGG
SRR836349.21 HWI-ST1085:39:D0D7RACXX:1:1101:6484:1991 length=100
4=DDFFFGHHGHJJIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
SRR836349.22 HWI-ST1085:39:D0D7RACXX:1:1101:6274:1992 length=100
ATATGCCAGCTAATCGTGTGGGCTTTAGAAGCCTGTGTACAAGCTCGTAACGAAGGGCGCGGATCTTGCTCGTGAAGGTAATGAAATTATCAAAGCAGAGA
SRR836349.22 HWI-ST1085:39:D0D7RACXX:1:1101:6274:1992 length=100
1=DDFFFHHHHIJJJJJIJJJJFIIJJJJJJJGIGIHIIJJJJJJIJJJJI
SRR836349.23 HWI-ST1085:39:D0D7RACXX:1:1101:6437:1995 length=100
GCTGATCAGCTCCCCGTTGTCGCCGCGCGCGGCGCCGGGATCGGAGAGCGGGTTCAGCAGGAATGCCGGAGCGGATCTCGTATGCCGTGTTCTG
SRR836349.23 HWI-ST1085:39:D0D7RACXX:1:1101:6437:1995 length=100
11BDDDDAFBFHHGIIAFGEFHGGHI <d<fg8', 5?8(998;80:00b7258<9:05-2(:3+8?0(44::="">&099(0&09CC0#################################</d<fg8',>
SKR836349.24 HWI-ST1085:39:D0D/RACXX:1:1101:7042:1998 length=100
5KK836549.24 hwi-ST1085:39:D0D/RACXX:1:1101:7042:1998 length=100
4=DDFFFHHHHHJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
SKR836349.25 HWI-ST1085:39:D0D/RACXX:1:1101:7402:1992 length=100

Three streams for a standard Linux program

Three streams for a standard Linux program

Search for a pattern and output matched lines

\$ cat mydata.txt

AAGATCAAAAAAGA

ATTTACGAAAAAAGA

ACCTGTTGGATCCAAAGTT

AAACTTTCGACGATCT

ATTTTTTAGAAAGG

\$ cat mydata.txt | grep '[AC]GATC'

AAGATCAAAAAAAA

AAACTTTCGACGATCT

These two commands are same

cat mydata.txt | grep 'GATC'

grep 'GATC' mydata.txt

* Functions like sort, wc, gunzip, head, tail, uniq can process either a file or data from STDIN.

grep -v Filter out certain lines

\$ cat mydata.txt

#seq1

AAGATCAAAAAAGA

#seq2

ACCTGTTGGATCCAAAGTT

\$ grep -v '^#' AAGATCAAAAAAGA

ACCTGTTGGATCCAAAGTT

- "-v" to select non-matching lines
- "^" beginning of a line; "\$" end of line

WC - I Count the number of lines

\$ cat mydata.txt

AAGATCAAAAAAAA

ATTTACGAAAAAAGA

ACCTGTTGGATCCAAAGTT

AAACTTTCGACGATCT

ATTTTTTAGAAAGG

\$ cat mydata.txt | grep '[AC]GATC' | wc -l

2

\$ sort myChr.txt	\$ sort -V myChr.tz	xt \$ sort -n myPos.txt
Chr1 Chr10 Chr2 Chr3 Chr4 Chr5	Chr1 Chr2 Chr3 Chr4 Chr5 Chr10	1 2 3 4 5 10

Sort Sort the text by multiple columns

\$ sort -k1,1V -k2,2n myChrPos.txt

Chr1	12
Chr1	100
Chr1	200
Chr2	34
Chr2	121
Chr2	300

Locale and sorting

Computer English

LC_ALL=C

Alphabetic order
Α
В
С
Х
γ
Z
а
b
С
•••
Х
у
Z

US English *

LC_ALL=US_en

Alphabetic order
а
Α
b
В
С
С
•••
х
Х
у
γ
Z
Ζ

Use this Linux command to find out the locale setting on your server:

locale

* On Linux, US English locale sorting also ignore the non-alphanumerical characters. This could cause problems.

Locale setting on BioHPC

Use the "locale" command to check locale setting:

```
[qisun@cbsum1c2b010 ~]$ locale
LANG=en US.UTF-8
LC CTYPE="C"
LC NUMERIC="C"
LC TIME="C"
LC COLLATE="C"
LC MONETARY="C"
LC MESSAGES="C"
LC PAPER="C"
LC NAME="C"
LC ADDRESS="C"
LC TELEPHONE="C"
LC MEASUREMENT="C"
LC IDENTIFICATION="C"
LC ALL=C
```

If you see errors like this when running software:

RuntimeError:

Python 3 was configured to **USE ASCII as encoding** for the environment. Consult https://click.palletsprojects.com/en/7.x/python3/ for mitigation steps.

You need to change the locale:

export LC_ALL=en_US.utf-8 export LANG=en_US.utf-8 Some extra parameter to set for the "sort" command

LC_ALL=C sort -S 4G -k1,1 myChr.txt

parameter

Uniq -C Count the occurrence of unique tags

\$ cat mydata.txt	\$ cat	mydata.txt sort	: uniq -c
ItemB			
ItemA	1	ItemA	
ItemB	4	ltemB	
ItemC	•		
ItemB	3	ItemC	Mark sure to run "sort" before "uniq"
ItemC			sort before any
ItemB			
ItemC			

	Merging files:	
ca	f1 f2 VS paste f1 f2 VS JOIN f1 f2	
	File 1:	
	ltem1	
	ltem2	
		1
	<u>File2:</u>	
	ltem3	
	ltem4	

cat File1 File2 > mergedfile1

ltem1 ltem2 ltem3 ltem4

paste File1 File2 > mergedfile2

Item1Item3Item2Item4

* Make sure that that two files has same number of rows and sorted the same way. Otherwise, use "join"

join	Merging field	
<u>File 1:</u>		
Gene1	DNA-binding	
Gene2	kinase	
Gene3	membrane	
<u>File2:</u>		
Gene2	764	
Gene3	23	
Gene4	34	

Merging two files that share a common field

join -1 1 -2 1 File1 File2 > mergedfile				
Gene2	Kinase	764		
Gene3	membrane	23		

join -11-21	-a1 File1 File2 >	mergedfile
Gene1	DNA-binding	
Gene2	Kinase	764
Gene3	membrane	23

\$ cat mydata.txt | cut -f 1,4 \$ cat mydata.txt Chr1 1000 2250 Gene1 Chr1 Gene1 Chr1 3010 5340 Gene2 Chr1 Gene2 Chr1 7500 8460 Gene3 Chr1 Gene3 Chr2 8933 9500 Gene4 Chr2 Gene4

\$ cat mydata.txt

Chr1 1000 2250 Gene1

Chr1 3010 5340 Gene2

Chr1 7500 8460 Gene3

Chr2 8933 9500 Gene4

\$ cat mydata.txt | sed "s/^Chr//"

- 1 1000 2250 Gene1
- 1 3010 5340 Gene2
- 1 7500 8460 Gene3
- 2 8933 9500 Gene4

\$ cat mydata.txt |\ awk '{if (\$1=="Chr1") print \$4}'

awk vs cut

Input data file: mydata.txt

Chr1	1000	2250	Gene1	
Chr1	3010	5340	Gene2	
Chr1	7500	8460	Gene3	
Chr2	8933	9500	Gene4	

cut -f2,1 mydata.txt

Chr1 1000 Chr1 3010 Chr1 7500 Chr2 8933

Same order as the input file

awk 'BEGIN{FS="\t"; OFS="\t"} {print \$2,\$1;}' \ mydata.txt

1000 Chr1 3010 Chr1 7500 Chr1 8933 Chr2

A Good Practice: Create a shell script file for the one liner

```
cat D7RACXX.fastq | \
head -n 40000 | \
grep AGATCGGAAGAGC | \
wc -l
```

Run the shell script

sh checkadapter.sh

Debug a one-liner

```
zcat human.gff3.gz | \
```

```
awk 'BEGIN {OFS = "\t"}; {if ($3=="gene") print $1,$4-1,$5}' | \
```

bedtools coverage -a win1mb.bed -b stdin -counts | \

LC_ALL=C sort -k1,1V -k2,2n > gene.cover.bed

zcat human.gff3.gz | head -n 1000 > tmpfile

cat tmpfile | \

awk 'BEGIN {OFS = "\t"}; {if (\$3=="gene") print \$1,\$4-1,\$5}' | head -n 100

Many bioinformatics software support STDIN instead of input file

Run "BWA" without pipe:

bwa mem ref.fa reads.fq > tmp.sam

samtools view -b tmp.sam > out.bam

Create a temporary SAM file

With pipe: bwa mem ref.fa reads.fq | **samtools** view -bS - > out.bam

Use "-" to specify input from STDIN instead of a file

Using pipe with bed tools:

The bedtools takes in two input files, you need to specify which file from stdin

..... | bedtools coverage -a FirstFile -b stdin

Using BEDtools to process genomics data files

An example: Count the number of reads in each 1kb sliding window of the genome

bedtools makewindows -g genome.txt -w 1000 -s 1000 > win1000.bed

bedtools coverage -abam Sample.bam -b win1000.bed -counts> coverage.bed

When working with text files from Windows ("/r/n"):

dos2unix myfile.sh

When working with text files from Mac:

- Mac files in general are same as Linux files;
- Only exception is text file saved from Excel ("/r"):

mac2unix myfile.txt

Edit text file without using "vi"

Software to directly open/edit/save files on a remote Linux server

Windows: Notepad++

(https://notepad-plus-plus.org/)

- Install Notepad++
- Click Plugins->Plugin Admins and install NPPFTP
- In the NPPFTP, click "Setting"-> "Profile Setting", set new profile with connection type "SFTP".

Mac: BBEdit (free mode)

(https://www.barebones.com/products/bbedit/)

 Open remote file from SFTP Server from the File menu

Dealing with large number of files

Data storage/transfer

Avoid large number of file:

- File system is good for large size, bad for large file numbers;
- Very slow data transfer ;

Solution: Archive into one single file

tar

- Commonly used in Linux;
- Slow to check content or access single file;
- Compression rely on other technology;

archive tar cf myDataDir.tar myDataDir

#unarchive
tar xf myDataDir.tar

• Use "-z" to compress. E.g. tar cfz myDataDir.tar.gz myDataDir

zip

- Not commonly used in Linux;
- Very fast to check content or access single file;
- Built-in compression;

archive
zip -0 -r myDataDir.zip myDataDir

#unarchive
unzip myDataDir.zip

"-0" suppresses compression, good to use if the files were already compressed.

Accessing files in archive

tar: very slow

list content
tar --list --file=myDataDir.tar

#extract a file
tar --extract --file=myDataDir.tar
myFile

* Use --to-stdout to stream to stdout

zip: very fast

list content
less myDataDir.zip
zipinfo myDataDir.zip dataset1/*

extract a file
#to a new file
unzip -j myDataDir.zip <path/>myFile
#to stdout
unzip -p myDataDir.zip <path/>myFile

A few suggestions:

- Organize files into subdirectories. Too many files (>~1000) in a single directory would be difficult to "ls".
- Too big tar file (>100G) could be difficult to transfer through network.
- Compression saves storage, but slow to process. Do not compress compressed files, or over-compression (set compression level).

Run software on large number of files

Create a task list

```
Is *fastq.gz | while read file; \
do echo "STAR --runThreadN 4 --genomeDir REFERENCE --readFilesIn ${file}; \
done;
```

A text file will be created

STAR --runThreadN 4 --genomeDir REFERENCE--readFilesIn sample1.fastq.gzSTAR --runThreadN 4 --genomeDir REFERENCE--readFilesIn sample2.fastq.gzSTAR --runThreadN 4 --genomeDir REFERENCE--readFilesIn sample3.fastq.gz

Process the tasks in parallel

export PATH=/programs/parallel/bin:\$PATH parallel --jobs 24 --timeout 1h < tasks