
BioHPC workshop "Parallelization and load
balancing": Exercises Part 2

This part of the workshops is devoted to using SLURM scheduler, especially as a tool for
parallelizing and load-balancing of multiple independent tasks. BioHPC offers a 'SLURM on
demand' service that allows any user to spin up a simple instance of SLURM cluster on one or
more machines the user has reserved through the BioHPC reservation calendar. This simple
procedure is described in https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=689#c.
Unfortunately, since one machine can only be part of one SLURM cluster, it will not be possible
for everybody to practice the procedure in the workshop environment, where each machine is
shared by multiple users. Instead, we have created a SLURM cluster ahead of time, consisting of
all workshop machines, with access given to all participants. The name of the cluster is
cbsum1c2b002 - same as the machine where the SLURM control daemon slurmctld is running.

For all SLURM-related exercises it will be convenient to create a dedicated folder in your home
directory (not /workdir this time!).

Smooth operation of SLURM requires requires a 'working directory' present on all cluster nodes,
and a subfolder of home directory, network-mount on all nodes, is the obvious choice. Note that
this does not mean that the actual computations will be performed there. We will use this
directory to store scripts, submit jobs, and collect results. Copy the sample SLURM submission
scripts from the workshop directory

Exercise 1: BLAST as a SLURM job

Remember the BLAST exercise (Exercise 2) from part 1? We will now submit our BLAST search to a
SLURM cluster. Open the script blast_slurm.sh in a text editor and carefully examine its
content and comments.

Submit this script (with /workdir/your_id/slurm_test as your current directory), requesting
your choice of number of threads and memory, e.g.,

Run squeue or squeue_l to see the status of the job. What is its job ID? Is it still pending? Is it
running? If so, on which machine? Do you see the job's output file (STDOUT + STDERR combined)
among your files? It should contain outputs from all echo and date commands scattered
throughout the script. This may help you figure out which stage the job is currently at.
Periodically run squeue and watch for output files to catch when the job ends.

Exercise 2: BWA alignment as a SLURM job

cd

mkdir slurm_test

cd slurm_test

cp /shared_data/Parallel_workshop/*.sh .

sbatch -N 1 -n 4 --mem=2G blast_slurm.sh

af://n0
https://biohpc.cornell.edu/lab/userguide.aspx?a=software&i=689#c
af://n8
af://n13

Now use the script bwa_slurm.sh to submit a BWA alignment job (Part 1, Exercise 3). Take a look
at the script in a text editor and make sure you understand its content and submit with options
of your choice. Note that the most important SLURM options are already requested in the
#SBATCH header lines. If you want to use those options, the submission command is simple:

You can also modify some of these parameters without changing the script, e.g.,

will run run the job using 4 threads rather than 8 requested via #SBATCH --ntasks=8 . After
submitting, check squeue to find out where the job is running. Log in to that machine via ssh and
start htop (-u your_id option will be useful). Is the job (i.e., all its processes combined) using all
allocated resources? Le the job run to completion.

Now edit the script and change the number of threads in ' -t ' option of bwa to 8 . Submit the job
again, but requesting a smaller number of cores, e.g., 2:

Again, log in to the node where the job is running (check it first with squeue), and fire up htop to
examine your processes. In htop , press H and t keys to toggle the tree and thread view. How
many bwa threads are running? How much combined %CPU are they all consuming? What is the
total CPU and memory consumption of your job, as reported by htop ? Are the core and memory
limits imposed by SLURM being obeyed?

Exercise 3: Multiple jobs vs job arrays

The simple script gzip_slurm.sh takes one of the files BBB_1, BBB_2, BBB_3 from the workshop
directory, compresses it using gzip, and copies the result to $HOME/slurm_test (examine the
script in the text editor to verify this). The script takes one argument, an integer, intercepted as
$1, which it uses to construct the file name. All important SLURM options are given in #SBATCH
header lines. Submit three separate jobs to compress the three files, one right after another, e.g.,

Instead, you could use the shell's for loop:

Right after submitting the three jobs, use squeue to verify their status. As any of the jobs
complete, the corresponding compressed file will appear in your submission directory.

sbatch bwa_slurm.sh

sbatch --ntasks=4 bwa_slurm.sh

sbatch -N 1 -n 2 --mem=2G bwa_slurm.sh

sbatch gzip_slurm.sh 1

sbatch gzip_slurm.sh 2

sbatch gzip_slurm.sh 3

for i in {1..3}

do

sbatch gzip_slurm.sh $i

done

af://n22

Instead of submitting 3 separate jobs using three separate sbatch commands, the process may
be simplified with the help of SLURM's job array mechanism. The script gzip_array.sh is a slight
modification of gzip_slurm.sh , utilizing the SLURM-provided environment variable
SLURM_ARRAY_TASK_ID to parametrize the input file instead of the external script argument. This
variable is defined within a SLURM job if the --array option is used at submission:

will have the same effect as the three separate sbatch commands above, i.e., will result in three
separate jobs being submitted. In squeue output, these jobs will be showed collectively in one
line when in pending (PD) state, and separately on different lines when in running (R) state. Their
job IDs will have the form similar top 1234_5 , where 1234 is the job ID of the first job of the
array, and 5 is the index of the array.

Exercise 4: Examine jobs' accounting information

Use sacct and its longer form sacct_l commands to sow information on jobs you just
submitted. What can you say about the efficiency of each job? Were the number of cores and
memory requested adequate?

sbatch --array=1-3 gzip_array.sh

sbatch gzip_slurm.sh 2

af://n32

	BioHPC workshop "Parallelization and load balancing": Exercises Part 2
	Exercise 1: BLAST as a SLURM job
	Exercise 2: BWA alignment as a SLURM job
	Exercise 3: Multiple jobs vs job arrays
	Exercise 4: Examine jobs' accounting information

