
Linux Software Installation

Part 1

Qi Sun
Bioinformatics Facility

Components of software

$which gzip

/usr/bin/gzip

$ldd /usr/bin/gzip

linux-vdso.so.1 => (0x00007ffd46732000)

libc.so.6 => /lib64/libc.so.6 (0x00007fd7cb256000)

/lib64/ld-linux-x86-64.so.2 (0x00007fd7cb623000)

E.g. gzip

Main
executable

Shared
libraries

/usr/

bin

lib

lib64

/usr/local/

bin

lib

lib64

/home/$USER

Software come with the
system. E.g. “ls”

Extra software installed
by administrator

Software installed by
yourself

BioHPC administrators install
software in /programs/

Where are the files?

export PATH=/home/xxxxx/bin:$PATH

When running a software – 1. executable

$echo $PATH
/programs/docker/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/programs/bin/mummer:/programs/bin/util:
/programs/bin/bowtie:/programs/bin/bwa:/programs/bin/cufflinks:/programs/bin/samtools:/programs/bin/tophat:/
programs/bin/fastx:/programs/bin/blast:/programs/bin/igv:/programs/bin/velvet:/programs/bin/iAssembler:/progra
ms/bin/GATK:/programs/bin/454:/programs/bin/blat:/programs/bin/perlscripts………………

The system find the executable file through $PATH

Default $PATH in BioHPC

Add path to the $PATH variable

Use “which” command to find the executable file:

which bwa

/programs/bin/bwa/bwa

Regular export LD_LIBRARY_PATH=/home/xxxxx/lib
PERL export PERL5LIB=/home/xxxxx/perl5/5.22.0
PYTHON export PYTHONPATH=/programs/lib/python2.7/site_packages

When running a software – 2. libraries

The system find shared libraries files through /etc/ld.so.conf

/usr/local/lib64:/usr/local/lib:/usr/lib64:/usr/lib

Add path of extra libraries (dependent on type of software)

Default path for library files

Use “ldd” command to identify library files for a
compiled binary program

ldd /programs/entropy/bin/entropy

C

linux-vdso.so.1 => (0x00007ffefb1d5000)
libgsl.so.0 => /lib64/libgsl.so.0 (0x00007efe3544a000)
libgslcblas.so.0 => /lib64/libgslcblas.so.0 (0x00007efe3520c000)
libz.so.1 => /lib64/libz.so.1 (0x00007efe34ff6000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007efe34df2000)
libm.so.6 => /lib64/libm.so.6 (0x00007efe34aef000)
libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007efe347e7000)
libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007efe345d1000)
libc.so.6 => /lib64/libc.so.6 (0x00007efe3420d000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007efe33ff1000)
libsatlas.so.3 => /usr/lib64/atlas/libsatlas.so.3 (0x00007efe333a4000)
/lib64/ld-linux-x86-64.so.2 (0x0000556c6875e000)
libgfortran.so.3 => /lib64/libgfortran.so.3 (0x00007efe33081000)
libquadmath.so.0 => /lib64/libquadmath.so.0 (0x00007efe32e45000)

System default paths (set by administrator)

• For executables: $PATH

• For standard libraries: /etc/ld.so.conf

You can add your own paths *:

• For executables: export PATH=<my-sofware>:$PATH

• For std. libraries: export LD_LIBRARY_PATH=<my-library>

* If you add these commands into ~/.bashrc, they would
become default for your account

Types of Software: Script vs Binary

Binary: C

Script: PERL, R, BASH, PYTHON (.py)

Bytecode: JAVA, PYTHON(.pyc)

Binary
machine code

Text file. Requires
an interpret to run

Human readable
source code

Binary software

Compile • Optimized;
• Hardware &

OS restricted
Binary

Human readable
script

Run through
Interpreter

• Not optimized;
• Run across

hardware & OS
Script

Byte
code

Human readable
source code

Run through runtime
environment

Byte
software

Compile • Semi-optimized;
• Run across

hardware & OS

A script is a text file, and it requires an interpreter
software to run.

python intron_exon_reads.py

Run script (In the example, it is a python script, and requires python software to interpret)

bwa

Run binary software (does not need another interpreter software)

intron_exon_reads.py

Instead of

python intron_exon_reads.py

You can also run a script without explicitly put
interpreter in command

To do this, two requirement:

a. A “shebang” line in the script;
b. File must be executable.

The Shebang line is the first line in a script file. It
tells Linux system what interpreter to use.

#!/usr/bin/python

* Linux is different from Windows. Windows recognizes the file name
extension “.py”, and rely on the name extension to decide which
interpreter to use.

#!/usr/bin/env Rscript

PYTHON

R

Make a script file executable:

To make a file executable:

$chmod a+x intron_exon_reads.py

x: executable

$ls -al intron_exon_reads.py

-rwxr-xr-x 1 root root 3362 Mar 5 20:25 intron_exon_reads.py

/usr/bin/gzip

/usr/lib64/libc.so.6

/usr/lib64/ld-linux-x86-64.so.2

Static: software with all

libraries included

Shared: software

require shared libraies

Static vs Shared Libraries

/programs/supernova-
2.0.1/supernova

If available, try to download the “static” version.

Software installation - an overview

STAR_2.3.0e.Linux_x86_64
STAR_2.4.0d
STAR_2.4.2a
STAR-2.5
STAR-2.5.2b
STAR-2.5.3a

You can install multiple versions of the same software

export PATH=/programs/STAR-2.5/bin/Linux_x86_64_static:$PATH

which STAR

echo $PATH

For software with static libraries, or only using standard
system libraries, you can simply download the software,
e.g., STAR

wget https://github.com/alexdobin/STAR/raw/master/bin/Linux_x86_64_static/STAR

chmod a+x STAR

https://github.com/alexdobin/STAR/raw/master/bin/Linux_x86_64_static/STAR

Installing software with shared libraries:

• Versions compatibility

• Path of the libraries

• Libraries are shared by multiple software;

• Different software require different verisons
of a library;

• Software cannot find path of library files;

• The developer’s computer is different from
user’s computer.

A version of HiCExplorer requires numpy v1.13

numpy==1.13.*
scipy==1.0.*
matplotlib==2.1.*
pysam==0.11.*
intervaltree==2.1.*
…

requirements.txt

/usr/lib/python2.7/site-

packages/numpy-1.14.3

However, our system has version
1.14.3

The solution: Containers and Virtual Environments

One computer can have many containers/environments. Each
software is installed within its own “eco-system”.

Hardware infrastructure Hardware infrastructure

Win.
Debian
Linux

VM1 VM2 VM3

Hypervisor

CentOs
Linux

Host OS Kernel

Debian
Linux

CentOs
Linux

Ubuntu
Linux

Virtual machines Docker

Hardware infrastructure

Host OS

app2 app3app1

Container1 Container2 Container3

Conda

Env.1 Env.2 Env.2

• Modified $PATH;
• File system not isolated;

• File system and network
port are contained;

• You can run VM with
different OS.

File structure of Linux system:

/usr/bin : system executables

/usr/lib : libraries

/usr/local/bin : extra executables

/usr/local/lib : extra libraries/modules

/etc : system configuration

bin

lib

etc

envs

env_1

env_2

env_3

env_n

With Conda, the file system looks like this:
/usr/bin

/usr/lib

etc

$HOME/

miniconda3
bin
lib
etc

bin

lib

etc

envs

env_1

env_2

env_3

env_n

/usr/bin

/usr/lib

etc

$HOME/

miniconda3
bin
lib
etc

System root

Conda
base

Conda
environment

Default when login

source $HOME/miniconda3/bin/activate

conda activate env_1

System root

Conda base

Conda environment

$ which python

/usr/bin/python

(base)$ which python

/home/xxxx/miniconda3/bin/python

(env_1)$ which python

/home/xxxx/miniconda3/env_1/bin/python

Anaconda vs Miniconda?

Anaconda for Python2

Anaconda for Python3

Miniconda for Python2

Miniconda for Python3

• Light, no extra libraries;
• Python3 is more used now;

Where to install Conda?

• Default: home directory. (recommended)

• It can also be installed in any directories
that you can write to.

How to install Conda?

https://docs.conda.io/en/latest/miniconda.html

https://docs.conda.io/en/latest/miniconda.html

Warning!!! When installing Conda,
you will be prompted this question: Do you wish the
installer to initialize Miniconda3?

Please answer: no
-- Otherwise, all software installed on BioHPC will stop working

How to find out that you have a problem?
Use the command “which python”, check whether you are using

“/usr/bin/python”

How to correct the problem?
Insert a line “return” before “# >>> conda initialize >>>”

Install software within Conda:
You can install the same software in either of the
two levels

Install software in Conda base:
• Save storage space, as the libraries are shared;

Install software in Conda environment:
• No inference between environments;
• Ensure reproducibility

#start conda

source $HOME/miniconda3/bin/activate
#install software

conda install blast

Install software in conda base

#start conda

source $HOME/miniconda3/bin/activate
#install software

conda create -c bioconda -n blast blast

Install software in conda environment

conda install -c bioconda blast

conda create -c bioconda -n blast blast

Name of the environment you
will create. It can be any
name.

Name of the Conda package.
This name must exists in the
channel.

Name of Conda channel. It is
the place where conda find
the package

Syntax for software installation

Name of Conda channel. It is
the place where conda find
the package

#start conda

source $HOME/miniconda3/bin/activate
#run software

blast

Run software in conda root

#start conda environment

source $HOME/miniconda3/bin/activate
conda activate blast
#run software

blast

Run software in conda environment

#in a conda environment

conda deactivate

#After this, you are in conda root

Exist conda environment

* There is no simple command to exit conda root to
system. You have to exit the Linux session.

Once a conda environment is created, you can
install other conda or python modules into the
environment

conda create -n myPipeLine python=3.6

create an empty conda environment with Python v3.6

conda activate myPipeLine

activate conda environment

pip install pysam

install pysam module in this environment

https://anaconda.org/

Check the package availability

Bioconda / blast 2.7.1

BioBuilds / blast 2.6.0

Searching for “blast” returns:

Current version at NCBI: 2.7.1

Check the software version in Conda before you use it

If something goes wrong, you can delete the

environment directory or the whole conda

directory, and build from scratch

Once you are in Conda, you have full privilege to install
anything.

You can install other python modules either with pip or
conda to install more python modules. But using “conda
install” whenever possible.

pip install numpy

conda install numpy

When running software in Conda, always make
sure that you know what layer you are in. If you
are not sure, type “which python”

Trouble shooting when running a software:

• Check which executable you are using. “which python”

• Check which library you are using. Run “echo
$PYTHONPATH” for Python or “echo $LD_LIBRARY_PATH”
for standard libraries. Use “unset PYTHONPATH” to unset.

• Check your “.bashrc” file, insert a line “return” to avoid
problematic code in this file

