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Abstract: We apply the methods of optimal experimental design to a differential equation model
for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incor-
porates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl,
the guanine exchange factor (GEF), Cool-1 (B-Pix) and the Rho family G protein Cdc42. The
complex has been suggested to be important in disrupting receptor down-regulation. We demon-
strate that the model interactions can accurately reproduce the experimental observations, that
they can be used to make predictions with accompanying uncertainties, and that we can apply
ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on

unmeasurable components of the system.

1 Introduction

The epidermal growth factor receptor (EGFR) is a
transmembrane tyrosine kinase receptor which becomes
activated upon binding of its ligand, epidermal growth
factor (EGF) and signals via phosphorylation of various
effectors [1]. Besides sending signals to downstream
effectors, the activated EGFR also will initialise endo-
cytosis which is followed by either degradation or recycling
of the receptor. These are the normal receptor down-
regulation processes. Persistence of activated receptor on
the cell surface can lead to aberrant signalling and
transformation of cells [2]. In addition, a variety of
tumour cells exhibit overexpressed or hyperactivated EGF
receptor [3, 4], indicative of the failure of normal receptor
down-regulation.

We concern ourselves with building a mathematical
model of the receptor endocytosis, recycling, degradation
and signalling processes that can reproduce experimental
data and incorporates the effects of regulating proteins
that themselves become active after EGF stimulation. The
schematic for the model is shown in Fig. 1. In particular,
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we examine the roles of the GEF, Cool-1 and the GTPase,
Cdc42, that have recently been discovered to be important
for EGFR homeostasis [5,6] through their interaction with
the E3 ubiquitin ligase, Cbl.

There is evidence for two interaction mechanisms which
disrupt the normal receptor down-regulation. The first
mechanism involves the formation of a complex between
active Cool-1, active Cdc42 and Cbl. After activation of
the receptor, Cool-1 becomes phosphorylated through a
Src-FAK phosphorylation cascade. Phosphorylated Cool-1
has GEF activity and in turn activates Cdc42 by catalysing
the exchange of guanosine diphosphate (GDP) for guano-
sine triphosphate (GTP). Unlike other GEFs, however,
activated Cool-1 can remain bound to its target, Cdc42,
[6] and can then form a complex with Cbl (mediated
through Cool-1 binding), effectively sequestering Cbl
from the receptor. Therefore the internalisation and
degradation of the receptor is inhibited and its growth
signal is maintained. (We use the ERK pathway as a
readout on the receptor mitogenic signal.) The second
mechanism is based on the findings of [5] that activated
Cool-1 can directly bind to Cbl on the receptor and block
endocytosis in a manner we hypothesise to be analogous
to the action of Sprouty2 [7].

To maintain normal receptor signalling, we postulate it is
crucial that deactivation of Cool-1 and subsequent dis-
sociation of the Cbl, Cool-1 and Cdc42 complex occur.
Then Cbl can induce receptor internalisation and ubiquitin
tag it for degradation in the lysosome. Internalised receptor
lacking ubiquitin moieties can be returned to the cell surface
from the early endosome via the recycling pathway.

The role of Cbl in the degradation mechanism for the
receptor has been understood for some time [8—10].
However, its function in mediating endocytosis still
remains controversial (e.g. [11—15]) as the receptor can
be internalised through more than one endocytic pathway.
We do not address that issue here but rather we assume in
our model that Cbl association and activation is necessary
for endocytosis, whether through a CIN85-endophilin inter-
action [16] or through ubiquitination of the receptor [15]
and therefore we do not include a separate Cbl-independent
endocytosis pathway. The overall set of these protein—
protein interactions is summarised in Fig. 1 (we also incor-
porate phosphatases in the model to act on the various
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Fig. 1 Schematic diagram showing the set of interactions in the
model of EGFR signalling, endocytosis and down-regulation (see
also [5])

Phosphatases are not shown

phosphorylated species, but this is not shown in the network
figure). There is a significant overlap between our model and
previous models of EGF receptor signalling and/or traffick-
ing [17-20]. Since we wish to focus on the role of the
Cool-1/Cdc42 proteins within the network and to demon-
strate the utility of optimal experimental design, we leave
out some of the known intermediate reactions involved in
the MAPK and EGFR-Src activation pathways, preferring
a ‘lumped’ description which is more computationally
manageable.

The goals of this manuscript are to demonstrate how a
modelling approach can be used to

(a) refine the necessary set of interactions in the biological
network,

(b) make predictions on unmeasured components of the
system with good precision, and

(¢) reduce the prediction uncertainty on components that
are difficult to measure directly, by using the methods of
optimal experimental design.

2 Methods

2.1 Mathematical model, parameter and
prediction uncertainties

Before we introduce the algorithms needed to address the
design question, we define the model and data in more
detail. Our differential equation model for EGFR signalling
and down-regulation contains 56 unknown biochemical
constants: 53 unknown rate and Michaelis Menten constants
(where they can be found, initial estimates were drawn from
the literature), and three unknown initial conditions which
we found useful to vary. The dynamical variables com-
prised 41 separate chemical species, including complexes.
The data consist entirely of time series in the form of
Western blots. (The data both come from the lab of the
co-authors and from the literature, see supplementary infor-
mation for details.) We have been careful to select data only
on NIH-3T3 cells, and in experimental conditions where the
cell has been serum-starved prior to EGF stimulation, to
prevent activation events not related to the EGFR ligand
binding. Most of the time series data are over a period
less than a few hours which allows us to ignore transcrip-
tional processes.

Since we have no information on most of the biochemical
constants, we must infer them from the data. Therefore we
optimise a cost function which measures the discrepancy of
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simulated data from the real data

2
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where « is an index on the D measured species, m,, is the
number of time points on species «, y is the trajectory of
the differential equation model, 6 is a vector of the logar-
ithm of the biochemical constants, d,; is the measured
value at time ¢,; for species « and o; is the error on the
measured value. In other words, we have a standard
weighted least squares problem to reduce the discrepancy
of the model output to the data by varying 6. (We use the
logarithm of the biochemical constants as it allows us to
apply an unconstrained optimisation method while main-
taining the positivity constraint and it removes the discre-
pancies between biochemical values that have naturally
different scales in the problem). As absolute numbers of
proteins in the network cannot be accurately measured,
data sets measuring activities of proteins are fit up to an
arbitrary multiplicative scale factor, which adds parameters
to the model not of direct inferential interest (nuisance par-
ameters). Where the relative quantity of a species can be
measured (normalised by the level before EGF stimulation
e.g.), the output of the differential equations is similarly
scaled by an appropriate common factor.

After the model has been successfully fit to the exper-
imental data, we have a parameter estimate 6 which in
general will have large covariances, approximated by the
inverse of the Fisher information matrix (FIM). The FIM
is defined as
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where the expectation is over the distribution of errors in the
data, which are assumed to be Gaussian. The expression for
the FIM above is exact when the model fits perfectly, that is
at the best fit, the expectation of the residuals is zero,
E[y.(ty;) — d;] = 0. The ith parameter uncertainty is given
by the square root of the ith diagonal element of the
inverse FIM. J = (1/0,,)dy,(,;, 0)/06]; is the the sensi-
tivity matrix of residuals with respect to parameters at the
best fit and is the analog to the design matrix in a linear
regression setting. The design space is the range of
species a and of time points 7,; for which measurements
could be taken. («i is the row index of J.)

We can also make predictions on components of the tra-
jectory (measured or unmeasured), yg(f) = yg(t, 6). The var-
iances on these quantities are given by

yg(t 0)' 3yg(t 9)

Var (y(1)) ~ lgM ™ ®)

The form of (5) can be thought of as a combination of the
underlying parameter uncertainty, quantified by M ™", and
the linear response of the system to the parameter uncer-
tainty, quantified by the sensitivities. Note that M is also
computed using the sensitivities of the trajectory of the
differential equations, which we obtain by implementing
the forward sensitivity equations [21]. In practice, M is
close to singular if we do not include some prior infor-
mation on parameter ranges. Therefore we assume a
Gaussian prior on the parameters centred on the best
fit values, and with a standard deviation of log(1000).
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(This corresponds to an approximately 1000-fold increase
or decrease in the non-logarithmic best fit biochemical
values.)

We recognise that there can be other sources of uncer-
tainty in predictions, for example if the dynamics of the
system are modelled stochastically or if there is model
uncertainty that needs to be taken into account. The
former is not relevant here as the measurements we fit are
not on the single cell level, but rather the average of large
populations of cells. The latter is certainly of interest but
we choose an approach where model errors are corrected
during the fitting and validation process, rather than
included a priori in the model definition.

Given the approximate nature of variance estimates
derived from the FIM and the linearised model response,
we supplemented these calculations with a computationally
intensive Bayesian Markov chain Monte Carlo (MCMC)
method to compute credible intervals for the predictions
we make on the model (see supplementary material). The
estimates from the Bayesian MCMC approach are in suffi-
cient agreement with the linearised error analysis results
that we believe that the optimal experimental design algor-
ithms introduced below are justifiably aimed at reducing the
approximate uncertainties of (5). Using MCMC for error
estimates within the framework of the optimal design algor-
ithms would be computationally infeasible.

2.2 Optimal experimental design

Optimal experimental design is a technique for deciding
what data should be collected from a given experimental
system such that quantities we wish to infer from the data
can be done so with maximum precision. Typically the
network as shown in Fig. 1 has components that can be
measured (e.g. total levels of active Cdc42, total levels of
surface receptor etc.) and components that are not directly
measurable (e.g. levels of the triple complex comprising
Cool-1, Cdc42 and Cbl). Therefore we can pose the ques-
tion of how to minimise the average prediction uncertainty
on some unmeasurable component of interest by collecting
data on measurable components of the system (we will use
the term unmeasurable loosely for the remainder to describe
species that are between difficult and impossible to measure
by standard methods). Minimising the average variance in
predictions is a design criterion called V-optimality in the
literature [22]. Other authors [23—25] have focused on redu-
cing parameter uncertainty but we believe that complex bio-
logical models, even with large amounts of precise time
series data, have intrinsically large parameter uncertainty
[26—28]. On the other hand, even with no extra data collec-
tion, the uncertainty on unmeasured time trajectories in
these biological systems can be surprisingly small despite
the large parameter uncertainty [27].

By altering the form of the matrix J in (4), through
measurements on different species at different times, we
have the possibility of reducing the average variance of
¥, which is an integral over time of the quantity defined
in (5). We discuss two types of design, continuous design
and sequential design.

Continuous design refers to the selection of a design
measure, 1, which is equivalent to a probability density
over the design space. For a linear model described by
y = f(t)'0 + € where f(f) € R" and € is an error term, the
FIM is

M(n) = j SO0 70 dr
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by definition of the design measure, n. However, M is a
symmetric N x N matrix made up of a convex combination
of the rank one symmetric matrices, f(¢) f(t)". Therefore it
can be represented by a convex combination of at most
N(N + 1)/2 design points (from Caratheodory’s Theorem)
X1, ..., XN(v+1)/2, that is as a convex combination of delta
function probability measures on those points. In other
words even continuous optimal designs for linear models
have only a finite number of design support points [29].
In one of the approaches that follows, we will attempt to
find a continuous design by approximating the design
measure by a number of finely spaced measurement
points with weights associated with each one, and we will
see that a near optimal design is in fact only supported on
a small subset of those points.

Sequential designs are more relevant to the situation we
consider here: experimental data have already been col-
lected and the model has already been fit. Therefore we
can get an initial estimate for the parameters in the system
and we can evaluate the FIM. Suppose that the current
design already has »n points and the current FIM is
M, =J,J,. The effect of adding the (n+ 1)-th design
point (e.g. y, at time point 7,;) merely adds a single row
to J,. Therefore the new FIM is the old FIM plus a rank
one update

aya(tai)
a0

aya(tai)t
o 36

M+l = 12+1Jn+l =J1€Jn +

n

b

The new inverse FIM is also a sum of terms (by applying
the Sherman-Woodbury-Morrison formula [30]): one invol-
ving the inverse of the old FIM and the other involving the
sensitivity vector at the new point, 9y4(Zai)/30|;, so evaluat-
ing (5) for a large number of proposed measurements is
computationally inexpensive.

We take an approach which is a combination of continu-
ous design and sequential design: assume that some initial
experiments have already been carried out and we have an
FIM for the system. We will then define a cost function
K(a, t,;) based on the integral of (5) and minimise it with
respect to « and 7. Initially the minimisation looks for
the best single data point to reduce the uncertainty (a
sequential design method). Once we know for which
species the data needs to be collected, we can then place
many potential measurements on that species with associ-
ated weights and minimise over the weights (to mimic con-
tinuous design methods where the set of weights is the
approximate design measure).

3 Results
3.1 Model refinements

The model was fit to 11 data sets, all Western blot data that
describe various signalling, internalisation and degradation
events that are triggered after receptor activation by ligand
(see supplementary information for the full set of fitted time
series and description of experiments).

During the iterative process of fitting and model refine-
ment we discovered certain interactions and model par-
ameters had to be adjusted to be consistent with the
experimentally observed behaviour. These can be viewed
as predictions of putative interactions that emerge from
the modelling process and are incorporated into the final
set of dynamical equations listed in the Appendix. We
briefly summarise these adjustments below.
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1. It appears necessary to incorporate an interaction to
allow the triple complex to be dissociated by a dephosphor-
ylation reaction. In particular, a reaction was needed
whereby Cool-1 within the complex could be inactivated
by its own dedicated phosphatase (a possible candidate
already present in the system is SHP-2, which has been
shown to dephosphorylate the related Sprouty protein
[31]). Without this effect, we would not observe the com-
plete deactivation of Cool-1 as it would be ‘protected’
within the triple complex. Additionally, a sensitivity analy-
sis to determine dominant reactions in the model identified
phosphatase reactions as important (see supplementary
material).

2. Interestingly, there is an important balance between the
level of receptor and Cool-1 in the system to maintain the
correct dynamics: if the level of receptor greatly exceeds
the Cool-1 level, then the activated receptor will lead
indirectly to phosphorylation of Cool-1 which in turn sus-
tains the level of signalling receptor before significant
amounts can be endocytosed.

3. The F28L fast cycling (hyperactive) mutant of Cdc42
has the ability to delay endogenous receptor down-
regulation for many hours beyond wild type cells (see
experiment 5 in the supplementary information). This is
only possible if the binding affinity of active Cdc42 to the
Cool-1-Cbl complex is strong enough to deplete the levels
of the latter and force the forward binding reaction of Cbl
to activated Cool-1. This provides a mechanism to sequester
more of the Cbl protein (in both the triple complex and the
Cool-1-Cbl complex) than would otherwise be possible.

In addition to the above adjustments, we made the fol-
lowing observations relating to the network dynamics and
structure.

We find that given these experimental data sets, a single
endocytosis mechanism which is Cbl dependent and solely
acts on activated receptors is sufficient to describe the avail-
able data on EGFR trafficking in NIH-3T3 cells. We
acknowledge that there is much controversy in the literature
as to the dominant endocytosis mechanisms and required
regulators, in general.

Despite the apparently earlier activation of Cdc42 than its
putative GEF, active Cool-1 (see experiments 10 and 11 in
supplementary information), the data still support a mech-
anism whereby Cdc42 activation only occurs through
Cool-1. The explanation of this effect is that the level of
Cool-1 is significantly higher than Cdc42. Then, although
only a fraction of Cool-1 is being activated at early times,
it is still sufficient to induce substantial activation of
Cdc42. In particular, we found that there was no need to
invoke another parallel activation mechanism for Cdc42
(through Vav e.g.) as initially might have been assumed.

3.2 Predictions

Once we have a model which reproduces the experimental
observations, we would like to make predictions on unmea-
sured or unmeasurable components of the system. The
motivation is twofold. Firstly, if we make a prediction on
a currently unmeasured component of the system which is
subsequently measured, we have an opportunity to test the
validity of our model. Secondly, if we are confident in the
model, we may want to test a hypothesis about the role of
an unmeasurable component in the system. If that unmea-
surable component has large uncertainties, we then need
to apply the methods of experimental design to improve
the situation. We will discuss these issues in what follows.

IET Syst. Biol., Vol. 1, No. 3, May 2007
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Fig. 2 Total surface receptor numbers after EGF stimulation in
stably expressing v-Src cells

Endogenous levels of Cool-1 (dashed curve) or overexpressed Cool-1
(solid curve). The dotted lines show the uncertainties in each of the
best fit predictions

3.2.1 Model validation: To first give an example of
model validation, consider the qualitative observation in
[5] that in stably expressing v-Src cells, in conditions
where Cool-1 is overexpressed, ligand-induced receptor
internalisation is blocked compared to an endogenous
Cool-1 control, for at least 60 min. The model is adjusted
to simulate the conditions of these v-Src cells by making
all Src in its active form, switching off Src inactivation
and increasing the initial amounts ten fold to mimic the
stable transfection. We then predict the total surface recep-
tor number under the two conditions and assign uncertain-
ties using (5). The results are shown in Fig. 2.

The qualitative observation of strong inhibition of intern-
alisation under conditions of overexpressed Cool-1 is veri-
fied by the model. Note that in this case the uncertainties
are small enough that we can confidently predict a large
difference in the fraction of receptors on the cell surface
after 60 min under the two conditions. Interestingly, the
model also predicts that this inhibition is much weaker in
cells that are not stably expressing v-Src, essentially
because the Cool-1 is not ‘pre-activated’ and endocytosis
of significant numbers of receptors can occur before the
pool of Cool-1 can become phosphorylated.

3.2.2 Optimal design for the triple complex: Another
question of interest is whether the triple complex, which
appears to be responsible for sequestering Cbl and blocks
receptor down-regulation when Cdc42(F28L) is expressed,
also forms in appreciable amounts in wild type cells.
Since the triple complex is an example of a species that is
very difficult to obtain an accurate set of measurements
for, we can test a hypothesis about its formation in wild
type cells by looking at its predicted time course, Fig. 3.
The relative amount of the triple complex is shown in
Fig. 3, where the number of molecules of the triple
complex has been scaled relative to the total level of Cbl.
Relative levels of complexes and the times of formation/
dissociation are more meaningful quantities than absolute
numbers of molecules, which are merely rough estimates
used to initialise the simulations. The best fit trajectory
for the triple complex suggests that at a maximum over
12% of Cbl is sequestered in the complex which represents
a significant proportion. However the uncertainty bounds
are too large to make this assertion; at the level of the
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Fig. 3 Predictions with uncertainty on the time course of the
triple complex consisting of active Cool-1, Cbl and active Cdc42

The quantity plotted is the percentage of total Cbl that is bound in the
triple complex

lower bound, less than 4% of Cbl is sequestered at a
maximum, and the triple complex dissociates within
15 min. This motivates the need for an optimal design
approach. We define a criterion which is the average uncer-
tainty in the prediction on the triple complex. We then opti-
mise this quantity using a sequential design approach
(therefore we need to perform only line minimisations in
the time coordinate for each of the 11 measurable species
in the system) and follow up by finding an approximate
optimal continuous design on that species. The results of
such an analysis are shown in Fig. 4.

The most striking features of the optimal design results
are that

1. a single measurement on total active Cdc42 can signifi-
cantly reduce the variance we see in the prediction on the
triple complex, as in Fig. 4b;

2. ‘even though the approximate continuous design allows
for 160 hypothetical measurements on the activity of
Cdc42, the optimal design weights are concentrated to just
a dozen early time points. That is, by just taking a few
measurements we can get a design very close to the optimal
continuous design for measuring total active Cdc42.

It is worth noting here that these extra measurements have
little effect on the parameter uncertainty as shown in Fig. 5.
Conversely, if we include hypothetical measurements on the
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Fig.5 Inverse FIM eigenvalues and parameter standard
deviations

a Eigenvalues of the approximate parameter covariance matrix, M,
with (light squares) and without (dark circles) the optimally designed
data to reduce the uncertainty of the triple complex trajectory

b Individual parameter standard deviations, sorted from smallest to
biggest with (light squares) and without (dark circles) the optimally
designed data. Note that the cutoff in the spectrum of eigenvalues is
because of the prior information assumed on parameters ranges.
Even with prior information, 40 of the 60 parameters have uncertain-
ties corresponding to a greater than 20-fold increase or decrease in
their non-logarithmic values

binding and unbinding constants involved in forming the
triple complex, we find only a negligibly small decrease in
the uncertainty in the prediction of the triple complex (see
supplementary information). This is not so surprising when
we understand that the uncertainty arises from the uncertain-
ties in components of the system upstream of the triple
complex; using parameter measurements alone, almost
every rate constant in the system would have to be measured
accurately to constrain the prediction [27].

3.2.3 New measurements on total active Cdc42:
Further measurements were made on total activated
Cdc42 in the lab by Western blotting and with no refitting,
our model was able to match the new data using a scale
factor alone, see Fig. 6a. (However, we cannot consider
this as a validation of our model, since prior to the inclusion
of the new data, the uncertainties on total activated Cdc42
were very large. Any experimental observations within
the uncertainty bounds would be consistent with the
model.) The uncertainties of the triple complex time

20|

Percent of total Cbl

0 5 10 15 20 25 30 35 aC
time (minutes)
b

Fig. 4 Optimal designs points on total active Cdc42 and reduced prediction uncertainty for the triple complex

a Trajectory of total active Cdc42 (solid line) with single sequential design measurement (marked with a dot) and approximate continuous design
weights (dotted line) to reduce the average variance of the prediction on the Cool-1, Cbl, Cdc42 complex. The weights are optimised over 160 uni-
formly spaced hypothetical measurements placed between 0 and 80 min on Cdc42

b Shows the reduction in the original uncertainty bounds resulting from the single measurement (dotted line) and the approximate continuous design
measurement (dashed line) in a. Compare with Fig. 3 before the addition of new measurements
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Fig.6 Fit to total active Cdc42 and reduced prediction
uncertainty for the triple complex.

a Without refitting to the new total active Cdc42 data, our prediction
matches the data using only a single multiplicative factor. a.u. =
arbitrary units

b Reduced uncertainty on the time course of the active Cool, Cbl and
active Cdc42 complex for the optimal set of design points (dashed line)
(same as Fig. 4b) and for the real data (dotted line)

course, given the real data and the optimally weighted data,
is shown in Fig. 6b. Importantly, given that the measured
activities of total Cdc42 were consistent with the trajectory
for the optimised set of parameters, the reduction in uncer-
tainty of the triple complex for the real data is comparable to
that for the optimally selected data and we can make a firm
conclusion that the triple complex does sequester significant
amounts of the Cbl protein even in wild type cells after EGF
stimulation. Therefore it appears that the complex plays a
part under normal conditions in the EGFR homeostasis.
(Note that if the new data collected showed a very different
time course than in Fig. 6a, an additional re-optimisation
step would need to be performed before we could assess
the prediction and uncertainties for the triple complex.)

4 Discussion

We have demonstrated that by quantitatively modelling the
dynamics of EGFR signalling and down-regulation in a
mammalian cell line, we are led to incorporate interactions
and modify existing reactions in order to reproduce the
experimental observations. Note that these interactions are
not directly tested by experiments, but we can infer them
from the existing data. This refinement of an existing
model of network interactions and parameters is one import-
ant aspect of the modelling effort and gives insight into the
underlying dynamics. Of course, we recognise that the
model as it stands will only explain the behaviours observed

IET Syst. Biol., Vol. 1, No. 3, May 2007

in the data sets we have chosen. The addition of new exper-
iments that test for receptor signalling from early endo-
somes [32], alternative endocytic mechanisms [15],
autocrine signalling [33, 34] or the interactions between
members of the erb-B family [35], for example, will
require appropriate extensions of the mathematical model.
We have also relied extensively on the Michaelis Menten
approximation for reaction kinetics, which we do not
believe fundamentally alters our results, but whose
appropriateness for large interconnected networks is
examined elsewhere [36].

The second part of the process is to make predictions on
the unmeasured or unmeasurable species of the system,
assuming that the model has been suitably refined. We
suggest that for testable predictions to be made, uncertainty
estimates need to be attached to them [26]. In some cases
the prediction uncertainties are rather small, despite large
parameter uncertainty. On the other hand, if some predic-
tions show large uncertainty, and involve species that are
not directly measurable, we may then define a suitable
design criterion and suggest new experimental measure-
ments that need to be taken to reduce that uncertainty.
The results of such an analysis are promising, in that we
find a rather small number of measurements (realistic to
perform with standard molecular biology techniques) need
be taken to begin to make predictions with good precision.
Given such measurements on the EGFR system, we see that
the triple complex of active Cool-1, Cbl and active Cdc42
does indeed form in appreciable quantities in wild type
cells and we also get an estimate for the time of formation
and dissociation.

More generally, we believe that experimental design for
reducing prediction uncertainties can play an important role
in the iterative process of model refinement and validation and
can be used in the testing of biological hypotheses.
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Appendix

The differential equations for the EGFR down-regulation
model and the best fit parameter values are included here.

There are 41 dynamical variables and 11 ‘assignment’

rules which are derived from the dynamical variables. The
assigned variables are functions of the dynamical variables
(e.g. total amount of protein) which correspond to exper-
imentally measured quantities. The abbreviations used to
shorten the names of the dynamical or assigned variables are:

Lyso = Lysosomal, Endo = Endosomal, PMEGFR =

Plasma membrance EGFR, Ubi = Ubiquitinated, PPase =
Phosphatase.

Assignment rules

[TotaPMEGFR] = [PMEGFR]

+ [PMBoundEGFR]

+ [PMBoundEGFRCblI]

+ [PMBoundEGFRCDblActive]

+ [PMBoundEGFRCool ActiveCbl]

[TotalPMBoundEGFR] = [PMBoundEGFR]
+ [PMBoundEGFRCDblI]
+ [PMBoundEGFR
CblActive]
+ [PMBoundEGFR
CoolActiveCbl]

[TotallnternalEGFR] = [EndosomalEGFR]
+ [Endosomal EGFRCb]
+ [EndosomalEGFR
CblActive]

+ [EndosomalEGFR
CoolActiveCbl]

+ [UbiEndosomal
EGFRCblActive]

+ [UbiEndosomalEGFR]

+ [LysoEGFRCblActive]

+ [LysoEGFR]

[TotallnternalEGF] = [EndosomalEGF]
+ [LysoEGF]

[TotalEGFR] = [TotalPMEGFR]
+ [Totallnternal EGFR]

[TotalUbiEGFR] = [UbiEndosomalEGFR
CblActive]
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+ [UbiEndosomalEGFR]
+ [LysoEGFR]
+ [LysoEGFRCblActive]

[Total Cdc42GDP] = [Cdc42GDP]
+ [CoolActiveCdc42GDP]
+ [CoolActiveCblCdc42GDP]

[TotalCdc42GTP] = [Cdc42GTP]
+ [CoolActiveCdc42GTP]
+ [CoolActiveCblCdc42GTP]

[TotalCoolActive] = [CoolActive]

+ [PMBoundEGFRCool
ActiveCbl]

+ [EndosomalEGFRCool
ActiveCbl]

+ [CoolActiveCdc42GDP]

+ [CoolActiveCdc42GTP]

+ [CoolActive CblCdc42GDP]

+ [CoolActiveCblCdc42GTP]

+ [CoolActiveCbl]

[TotalCblActive] = [CblActive]
+ [PMBoundEGFRCDblActive]
+ [EndosomalEGFRCblActive]
+ [UbiEndosomal EGFR
CblActive]
+ [LysoEGFRCblActive]

[TotalCbl] = [TotalCblActive]

+ [Cb]

+ [PMBoundEGFRCbl]

+ [PMBoundEGFRCool
ActiveCbl]

+ [EndosomalEGFRCbl]

+ [EndosomalEGFRCool
ActiveCbl]

+ [CoolActiveCblCdc42GDP]

+ [CoolActiveCblCdc42GTP]

+ [CoolActiveCbl]

Differential equations
d[EGF]
dr

= kuEGF - [PMBoundEGFR]

— kbEGF - [EGF] - [PMEGFR]

d[PMEGFR]

& = kuEGF - [PMBoundEGFR]
+kRec - [Endosomal EGFR]
+ ktEGFR

— kbEGF - [EGF] - [PMEGFR]

— kdEGFR - [PMEGFR]
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d[PMBoundEGFR]

T =KkbEGF - [EGF] - [PMEGFR]

kPPaseCool - [PPase]
-[PMBoundEGFR

n CoolActiveCbl]
(KmPPaseCool 4+ [PMBoundEGFR

CoolActiveCbl])

+kuCoolCblIEGFR

- [PMBoundEGFRCoolActiveCbl]
+kuCbl - [PMBoundEGFRCbl]]

+ kuCbl - [PMBoundEGFRCblActive]
—kuEGF - [PMBoundEGFR]
—kbCoolCblIEGFR
-[CoolActiveCblCdc42GTP]

- [PMBoundEGFR] — kbCoolCbIEGFR
-[CoolActiveCbl] - [PMBoundEGFR]
—kbCbl - [PMBoundEGFR] - [Cbl]
—kbCbl - [PMBoundEGFR]
-[CblActive]

d[PMBoundEGFRCbl]

& = kbCbl - [PMBoundEGFR]

kPPaseCbl - [PPase]

-[PMBoundEGFR
CblActive]
([PMBoundEGFR

CblActive]
+KmPPaseCbl)

— kuCbl - [PMBoundEGFRCbl]
— kCbl - [PMBoundEGFRCb]

-[CbI] +

d[PMBoundEGFR
CblActive]

% =kbCbl - [PMBoundEGFR]

-[CblActive] +kCbl
-[PMBoundEGFRCDI]
—kEndo - [PMBoundEGFR
CblActive] — kuCbl
-[PMBoundEGFR CblActive]

kPPaseCbl - [PPase]

-PMBoundEGFR
CblActive]
~ ([PMBoundEGFR

CblActive]
+KmPPaseCbl)

d[PMBoundEGFR
CoolActiveCbl]

i =kbCoolCbIEGFR

-[CoolActiveCblCdc42GTP]
-[PMBoundEGFR] +kbCoolCbIEGFR
-[CoolActiveCbl]

-[PMBoundEGFR]
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kPPaseCool - [PPase]

_ -[PMBoundEGFRCoolActiveCbl]
(KmPPaseCool +[PMBoundEGFR

CoolActiveCbl])

—kuCoolCbIEGFR
-[PMBoundEGFRCoolActiveCbl]

d[Cbl]  kPPaseCool - [PPase] - [CoolActiveCbl]
dt  (KmPPaseCool + [CoolActiveCbl])
kPPaseCool - [PPase]

- [PMBoundEGFRCoolActiveCbl]
(KmPPaseCool

+[PMBoundEGFRCoolActiveCbl])

kPPaseCool - [PPase]
-[CoolActiveCblCdc42GTP]
(KmPPaseCool + [CoolActiveCblCdc42GTP]
+ kuCool42, - [CoolActiveCblCdc42GTP]
+ kuCoolCbl - [CoolActiveCbl]
+ kuCbl - [PMBoundEGFRCbl]
kPPaseCbl - [PPase] - [CblActive]
([CblActive] + KmPPaseCbl)
+ kuCbl - [Endosomal EGFRCb]]
— kbCo0l42y, - [CoolActiveCdc42GTP] - [Cbl]
— kbCoolCbl - [CoolActive] - [Cbl]
— kbCbl - [PMBoundEGFR] - [Cbl]
— kbCbl - [EndosomalEGFR] - [Cbl]

+

d[Cbl(?tctlve] — uChl
- [PMBoundEGFRCblActive] + kuCbl
- [EndosomalEGFRCblActive] + kuCblUbi
- [UbiEndosomalEGFRCblActive] — kbCbl

- [PMBoundEGFR] - [CblActive]

kPPaseCbl - [PPase] - [CblActive]
([CblActive] + KmPPaseCbl)

— kbCbl - [EndosomalEGFR] - [CblActive]
— kbCblUbi - [UbiEndosomalEGFR]
- [CblActive]

d[Cool]  kPPaseCool - [PPase] - [CoolActive]
a ([CoolActive] + KmPPaseCool)
kPPaseCool - [PPase] - [CoolActiveCbl]
(KmPPaseCool + [CoolActiveCbl])
kPPaseCool - [PPase]

- [PMBoundEGFR CoolActiveCbl]
* (KmPPaseCool + [PMBoundEGFR

CoolActiveCbl])
kPPaseCool - [PPase]
- [CoolActiveCblCdc42GTP]
(KmPPaseCool + [CoolActive
CblCdc42GTP))
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kPPaseCool - [PPase]
+ - [CoolActiveCdc42GTP]
(KmPPaseCool + [CoolActiveCdc42GTP))

kPPaseCool - [PPase]
+ -[CoolActiveCdc42GDP]
(KmPPaseCool 4-[CoolActiveCdc42GDP])
_ kFAKCool - [FAKActive] - [Cool]
([Cool] + KmFAKCool)

d[CoolActive]

& = kuCool42

- [CoolActiveCdc42GDP]
+ kuCo0l42GTP
- [CoolActiveCdc42GTP]

kFAKCool - [FAKActive] - [Cool]
([Cool]+KmFAKCool)

+ kuCoolCbl - [CoolActiveCbl]
— kbCoo0l42 - [CoolActive]

- [Cdc42GDP] — kbCo0l42GTP
- [CoolActive] - [Cdc42GTP]

kPPaseCool - [PPase] - [CoolActive]
" ([CoolActive] + KmPPaseCool)

— kbCo0ICbl - [CoolActive] - [Cbl]

d[EndosomalEGF]
dr

= kEndo - [PMBoundEGFRCblActive]

— kLyso - [EndosomalEGF]

d[EndosomalEGFR] — 1uCoolChIEGFR

dr

- [EndosomalEGFRCoolActiveCbl]

+ kuCbl - [EndosomalEGFRCDlI]

+ kuCbl - [EndosomalEGFR
CblActive] — kbCoolCbIEGFR

- [CoolActiveCblCdc42GTP]

- [EndosomalEGFR] — kbCbl

- [EndosomalEGFR] - [Cbl]

— kbCbl - [EndosomalEGFR]

- [CblActive] — kRec

- [EndosomalEGFR]

d[Endosomal kPPaseCbl - [PPase]-
EGFRCbI]  [EndosomalEGFRCblActive]
dt ~ ([EndosomalEGFRCblActive]

+ KmPPaseCbl]
+ kbCbl - [EndosomalEGFR]
- [Cbl] — kuCbl
- [Endosomal EGFRCbl]
— kCbl - [Endosomal EGFRCbI]

d[EndosomalE

GFRCDlActive]

& = kEndo

- [PMBoundEGFRCblActive]
+ kbCbl - [EndosomalEGFR]
- [CblActive] + kCbl

- [EndosomalEGFRCbl]
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kPPaseCbl - [PPase]-
[Endosomal EGFRCblActive]
([EndosomalEGFRCDblActive]

+ KmPPaseCbl)
— kuCbl
- [EndosomalEGFRCDblActive]
— kUbi
- [EndosomalEGFRCDblActive]

d[EndosomalEGFR
COO]AZZ‘VGCM] — kbCoolCbIEGFR

- [CoolActiveCblCdc42GTP]

- [EndosomalEGFR]

— kuCoolCblEGFR

- [EndosomalEGFRCoolActiveCbl]

42GTP
% — kuCool42GTP

- [CoolActiveCdc42GTP]

kPPaseCool - [PPase]-
[CoolActiveCblCdc42GTP]
(KmPPaseCool

+ [CoolActiveCblCdc42GTP])

kPPaseCool - [PPase]-
[CoolActiveCdc42GTP]
(KmPPaseCool
+ [CoolActiveCdc42GTP])

+ kuCool42GTP

- [CoolActiveCblCdc42GTP]
+ kbCoolCblEGFR

- [CoolActiveCblCdc42GTP]

- [EndosomalEGFR]

— kbCo0l42GTP - [CoolActive]
- [Cdc42GTP]

_ KGAP - [Cdc42GAP] - [Cdc42GTP)
([Cdc42GTP]+ KmGAP)

— kbCool42GTP
- [CoolActiveCbl] - [Cdc42GTP]

d[Cdc42GDP]

& = kuCool42

- [CoolActiveCdc42GDP]

kGAP - [Cdc42GAP] - [Cdc42GTP]
([Cdc42GTP] + KmGAP)
kPPaseCool - [PPase]-

[CoolActiveCdc42GDP]
(KmPPaseCool

+ [CoolActiveCdc42GDP])
+ kuCool42 - [CoolActiveCblCdc42GDP]

IET Syst. Biol., Vol. 1, No. 3, May 2007

+ kbCoolCbIEGFR

- [CoolActiveCblCdc42GTP]

- [PMBoundEGFR]

— kbCool42

- [CoolActive] - [Cdc42GDP]
d[Cdc42GAP]
T — 0
d[CoolActive

_Cdc42GDP] = kbCool42
dr
- [CoolActive] - [Cdc42GDP]
— kCool42
- [CoolActiveCdc42GDP]
— kuCool42
- [CoolActiveCdc42GDP]
kPPaseCool - [PPase]

-[CoolActiveCdc42GDP]
(KmPPaseCool

+ [CoolActiveCdc42GDP])

d[CoolActiveCdc

42GTP]

& = kCool42

- [CoolActiveCdc42GDP]

+ kbCo0l42GTP

- [CoolActive] - [Cdc42GTP]

+ kuCool42,

- [CoolActiveCblCdc42GTP]

— kuCool42GTP

- [CoolActiveCdc42GTP]
kPPaseCool - [PPase]

-[CoolActiveCdc42GTP]
(KmPPaseCool

+ [CoolActiveCdc42GTP])

— kbCool42y,
- [CoolActiveCdc42GTP] - [Cbl]

d[CoolActive KGAP - [Cdc42GAP]
CblCdc42GDP]  -[CoolActiveCblCdc42GTP]

dr ([CoolActiveCbICdc42GTP]
+KmGAP)

— kuCool42 - [CoolActiveCblCdc42GDP]

d[CoolActive
CblCdc42GTP] = kbCool42GTP - [CoolActiveCbl]
dr
- [Cdc42GTP] + kbCool42

- [CoolActiveCde42GTP] - [Cbl]

kPPaseCool - [PPase]
- [CoolActiveCblCdc42GTP]
- (KmPPaseCool

+ [CoolActiveCblCdc42GTP])

199



— kuCool42GTP
- [CoolActiveCblCdc42GTP]
— kuCool42y,

- [CoolActiveCblCdc42GTP]

kGAP - [Cdc42GAP]
— -[CoolActiveCblCdc42GTP]
([CoolActiveCblCdc42GTP]+KmGAP)

— kbCoolCblEGFR

- [CoolActiveCblCdc42GTP]

- [PMBoundEGFR] — kbCoolCbIEGFR
- [CoolActiveCblCdc42GTP]

- [EndosomalEGFR]

d[CoolActiveCbl]

= kuCool42GTP
dr

- [CoolActiveCblCdc42GTP]

+ kuCool42

- [CoolActiveCblCdc42GDP]

+ kbCoolCbl - [CoolActive]

- [Cbl] + kuCoolCbIEGFR

- [PMBoundEGFRCoolActiveCbl]
+ kuCoolCbIEGFR

- [Endosomal EGFRCoolActiveCbl]

kPPaseCool - [PPase]
- [CoolActiveCbl]
B (KmPPaseCool 4 [CoolActiveCbl])
— kbCo0l42GTP - [CoolActiveCbl]
- [Cdc42GTP] — kuCoolCbl
- [CoolActiveCbl] — kbCoolCbIEGFR
- [CoolActiveCbl] - [PMBoundEGFR]

d[UbiEndos .
omalEGFR] = kuCblUbi
ds

- [UbiEndosomal EGFRCblActive]

— kbCblUDi - [UbiEndosomalEGFR]
- [CblActive] — kLyso

- [UbiEndosomal EGFR]

d[UbiEndosomal

EGFRCblActive]
dr

= kUbi - [Endosomal EGFRCblActive]

+ kbCblUbi - [UbiEndosomalEGFR]

- [CblActive] — kuCblUbi

- [UbiEndosomalEGFRCblActive]

— kLyso - [UbiEndosomal
EGFRCDblActive]

d [recycledEGFR]
de

= kRec - [EndosomalEGFR]
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d[LysoEGFR
dILysoEGFR] _ 11 vso - [UbiEndosomal EGFR]

dr
— kProt - [LysoEGFR]
d[LysoEGFR
1Acti
Cb dc; ive] _ KLyso
- [UbiEndosomal EGFRCblActive]
— kProt - [LysoEGFRCblActive]
d[LysoEGF
% = kLyso - [EndosomalEGF]

— kProtEGF - [LysoEGF]

d[Src]  kPPase-[PPase] - [SrcActive]
dr —  ([SrcActive]+KmPPase)

kEGFRSrc -

_ [TotalPMBoundEGFR]
-[Src]
([Src] +KmEGFRSrc)
KEGFRSrc -

— [TotallnternalEGFR] - [Src]
([Src] +KmEGFRSrc)

: kEGFRSrc -
d[SreActive] _ 1 41PMBoundEGFR] - [Src]
dr ([Src] + KmEGFRSTIc)

kEGFRSrec - [TotallnternalEGFR] - [Src]
([Src]+KmEGFRSrc)

kPPase - [PPase] - [SrcActive]
([SrcActive] + KmPPase)

d[FAK] kPPase - [PPase] - [FAKActive]
dt ([FAKActive] + KmPPase)

kSrcFAK - [SrcActive] - [FAK]
([FAK] + KmSrcFAK)

d[FAKActive]  kSrcFAK - [SrcActive] - [FAK]

dt N ([FAK] + KmSrcFAK)
kPPase - [PPase] - [FAKActive]
([FAKActive] + KmPPase)
d[ERK]  kdErk - [PPase] - [ErkP]
dr ([ErkP] + KmdErk)
kErk - [RasGTP] - [ERK]
([ERK] + KmErk)

d[RasGDP] kRasGAP - [RasGAP] - [RasGTP]
df  ([RasGTP] + KmRasGAP)
kErkRas - [ErkP] - [RasGTP]
([RasGTP] + KmErkRas)
kRas-
[TotalPMBoundEGFR]
_ - [RasGDP]
([RasGDP] 4+ KmRas)

kRas - [Totallnternal EGFR] -
- [RasGDP]
([RasGDP]+KmRas)
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d[RasGAP]

dt

d[ErkP]  KkErk - [RasGTP] - [ERK]

dt

dt

IET Syst. Biol.,

([ERK] + KmErk)

kdErk - [PPase] - [ErkP]

([ErkP] + KmdErk)

d[PPase]

dr
D EGFR
d egraccilid GFR] = kProt - [LysoEGFRCblActive]
+ kProt - [LysoEGFR]
d[DegradedEGE]

= kProtEGF - [LysoEGF]

Abbreviati%ns for rate constant names in Table 1 are
as follows: all rate constants begin with ‘k’, Michaelis-
Menten constants with ‘Km’, ‘ku’ is an unbinding rate,
‘kb’ is a binding rate, ‘kt’ is transcription/translation rate,
‘kd’ is a degradation rate. The specific reactions that each
biochemical parameter describes are shown in the Table.
Note that in the context of the parameter uncertainty
shown in Fig. 5, referring to a single best set of parameter
values is inaccurate, as there exists an entire family of par-
ameter sets with essentially equivalent model outputs.
However, the parameters shown in the table are the ‘best
fit’ parameters which provide the fits shown in the sup-
plementary material.

Best fit parameter values. Unless otherwise stated, the parameter is a rate constant.

Molecular amounts are measured by molecular number, and time is measured in minutes

kRas-
d[RasGTP] _ |TotalPMBoundEGFR]
B -[RasGDP]
([RasGDP]+ KmRas)
kRas - [Totallnternal EGFR] -
+ [RasGDP]
([RasGDP]+KmRas)
_ kRasGAP-[RasGAP]-[RasGTP]
([RasGTP]+KmRasGAP)
kErkRas - [ErkP] - [RasGTP]

~ ([RasGTP] + KmErkRas)
Table 1:
ChbliC 35 824.1567 916
CoollC 171 986.913 584
Cdc42iIC 6287.20 482 709
kbEGF 1.27 007 412 549 x 108
kuEGF 0.00 308 907 282 474
kbCoolCbl 2.9696 348 704 x 10~ ©
kuCoolCbl 0.0139 521 257 042
kbCoolCbIEGFR 0.00 236 902 387 151
kuCoolCbIEGFR 0.977 152 064 172
kbCool42 0.00 201 364 864 644
kuCool42 0.0222 192 029 238
kbCool4d2 bl 0.0516 455 719 396
kuCool4d2 bl 0.00 682 821 254 319
kbCoold2GTP 0.0847 193 655 231
kuCoold2GTP 0.00 671 059 371 127
kGAP 0.0188 624 358 733
KmGAP 7086.09 430 902
kEndo 11.1665 976 526
kLyso 14.5741 564 171
kProt 19.7749 621 241
kProtEGF 0.00 841 869 306 691
kbCbl 3.4519 451 8304 x 10~°
kuCbl 0.00 554 568 738 575
kbCblUbi 0.00 303 250 359 176
kuCblUbi 143.533 297 692
kCbl 14.9383 334 083
kUbi 12.8941 557 064
kCool42 25.8977 169 465
kRas 0.130 528 255 097
KmRas 2571.6114 437
kRasGAP 0.0259 233 381 417
KmRasGAP 6947.94 735 971
kErk 0.78 289 949 978

Cbl initial number

Cool initial number

Cdc42 initial number

EGF binding

EGF unbinding

Cool Cbl binding

Cool Cbl unbinding

Cool Cbl complex binding to receptor

Cool Cbl complex unbinding from receptor
Cool Cdc42GDP binding

Cool Cdc42GDP unbinding

Cool Cdc42 complex binding to Cbl

Cool Cdc42 complex unbinding to Cbl

Cool Cdc42GTP binding

Cool Cdc42GTP unbinding

Cdc42 deactivation constant
Michaelis-Menten Cdc42 deactivation constant
endocytosis rate constant

rate constant for transfer to lysosome
proteolysis rate constant for receptor
proteolysis rate constant for EGF

Cbl receptor binding

Cbl receptor unbinding

Cbl ubiquinated receptor binding

Cbl ubiquinated receptor unbinding

Cbl activation by receptor

ubiquitination of receptor by bound active Cbl
Cdc42GDP activation by Cool

Ras activation

Ras Michaelis-Menten activation constant
Ras deactivation by GAP

Ras Michaelis-Menten deactivation constant
Erk activation by RasGTP
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(Table continued)
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Table 1: Continued

KmErk 2653.56 615 157 Erk Michaelis-Menten activation constant

kdErk 5.51 257 830 148 Erk deactivation by phosphatase

KmdErk 11.1526 801 363 Erk Michaelis-Menten deactivation constant

kErkRas 1.17 574 704 673 Ras deactivation by activated Erk (negative
feedback)

KmErkRas 342.874 428 432 Ras deactivation Michaelis-Menten constant

kEGFRSrc 0.4439 199 291 Src activation

KmEGFRSrc 4220.0030 575 Src Michaelis-Menten activation constant

kSrcFAK 8.01 255 586 265 FAK activation

KmSrcFAK 2569.69 644 914 FAK Michaelis-Menten activation constant

kFAKCool 78.0319 081 233 Cool activation

KmFAKCool 121 085.033 481 Cool Michaelis-Menten activation constant

ktEGFR 0.00 270 489 867 598 receptor transcription

kdEGFR 0.00 023 499 407 766 receptor (non-specific) degradation

kRec 0.0108 367 146 003 recycling rate constant

kPPase 63.9789 592 234 general dephosphorylation

KmPPase 2083.79 578 915 general dephosphorylation Michaelis-Menten
constant

kPPaseCbl 0.0234 779 943 608 Cbl dephosphorylation rate

KmPPaseCbl 3107.44 359 155 Cbl dephosphorylation Michaelis-Menten constant

kPPaseCool 146.955 731 588 Cool dephosphorylation rate

KmPPaseCool 3096.00 331 638 Cool dephosphorylation Michaelis-Menten constant

PMEGFRIC 15 564.3598 552 total initial number surface EGFR (experiments 6, 7
and 10 only)

kF28 0.32 481 948 655 Cdc42 F28L mutant activation rate

OccupiedEGFRNoOEGF3T3 38 194.6447 963 initial occupied number of surface EGFR

(experiment 4 only)
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