
MAY/JUNE 2007 Copublished by the IEEE CS and the AIP 1521-9615/07/$25.00 © 2007 IEEE 75

Editor: David Winch, winch@taosnet.net

E D U C A T I O N

T he field of computational sci-
ence and engineering (CSE)
integrates mastery of specific

domain sciences with expertise in data
structures, algorithms, numerical
analysis, programming methodolo-
gies, simulation, visualization, data
analysis, and performance optimiza-
tion. The CSE community has em-
braced Python as a platform for
attacking a wide variety of research
problems, in part because of Python’s
support for easily gluing together
tools from different domains to solve
complex problems. Many of the same
advantages that Python brings to CSE
research also make it useful for teach-
ing: Python and its many batteries can
help students learn a wide swath of
techniques necessary to perform ef-
fective CSE research.

“Computational Methods for Non-
linear Systems” is a graduate-level
computational science laboratory
course that we jointly teach at Cornell.
We began developing the course in
summer 2004 to support the curricular
needs of the Cornell IGERT program
in nonlinear systems, a broad and in-
terdisciplinary graduate fellowship pro-
gram aimed at introducing theoretical
and computational techniques devel-
oped in the study of nonlinear and
complex systems to a range of fields.

The course’s format is somewhat
unusual. As a computational labora-

tory course, it provides relatively little
in the way of lectures: we prefer to
have students learn by doing rather
than listening. The course is auto-
nomous, modular, and self-paced: stu-
dents choose computational modules
to work on from a large (and hopefully
growing) suite of those available, and
then proceed to implement relevant
simulations and analyses as laid out in
the exercises. We provide “Hints” files
to help the students along: these con-
sist of documented skeletal code that
the students are meant to flesh out.
We’ve written several different visual-
ization tools to provide visual feed-
back. We find these help engage the
students in new problems and are use-
ful in code debugging.

Python is a useful teaching language
for several reasons. Its clean syntax lets
students learn the language quickly, and
lets us provide concise programming
hints in our documented code frag-
ments. Python’s dynamic typing and
high-level, built-in datatypes enable stu-
dents to get programs working quickly,
without struggling with type declara-
tions and compile-link-run loops. Be-
cause Python is interpreted, students can
learn the language by executing and
analyzing individual commands, and we
can help them debug their programs by
working with them in the interpreter.

Another key advantage that Python
brings to scientific computing is the

availability of many packages support-
ing numerical algorithms and visualiza-
tion. While some of our exercises
require developing algorithms from
scratch, others rely on established nu-
merical routines implemented in third-
party libraries. Although it’s important
to understand the fundamentals of al-
gorithms, error analysis, and algorith-
mic complexity, it’s also useful to know
when and how to use existing solutions.
We make heavy use of the NumPy
(www.scipy.org/numpy) and SciPy (www.
scipy.org) packages for efficiently ma-
nipulating arrays and for accessing rou-
tines to generate random numbers,
integrate ordinary differential equa-
tions, find roots, compute eigenvalues,
and so on. We use matplotlib (http://
matplotlib.sourceforge.net) for x-y plot-
ting and histograms. We’ve written sev-
eral visualization modules that we
provide to students, based on the
Python Imaging Library (PIL; www.
pythonware.com/products/pil), using
PIL’s ImageDraw module to place
graphics primitives within an image,
and the ImageTk module to paste an
image into a Tk window for real-time
animation. We recommend the use of
the IPython interpreter, which facili-
tates exploration by students (www.
ipython.scipy.org). We’ve also used
VPython (www.vpython.org) to gen-
erate 3D animations to accompany
some of our modules.

PYTHON FOR EDUCATION
Computational Methods for Nonlinear Systems

By Christopher R. Myers and James P. Sethna

The authors’ interdisciplinary computational methods course uses Python and associated numerical and
visualization libraries to enable students to implement simulations for several different course modules, which
highlight the breadth and flexibility of Python-powered computational environments.

76 COMPUTING IN SCIENCE & ENGINEERING

Course Modules
Our course modules are too numerous
to describe in detail in this article, so
we refer interested readers to our
course Web site (www.physics.cornell.
edu/sethna/teaching/Computational
Methods) for more information, as
well as access to problems, hints, and
answers. (Many of the exercises have
also been incorporated into a new text-
book.1) Here, we highlight a few of the
modules to illustrate both the breadth
of science that you can teach with
Python and the variety of tools and
techniques that Python can bring to
bear on such problems.

Small-World Networks
The study of complex networks has
flourished over the past several years as
researchers have discovered common-
alities among networked structures that
arise in diverse fields such as biology,
ecology, sociology, and computer sci-
ence.2 An interesting property found in
many complex networks is exemplified
in the popular notion of “six degrees of
separation,” which suggests that any
two people on Earth are connected
through roughly five intermediate ac-

quaintances. Duncan Watts (now at
Columbia) and Steve Strogatz at Cor-
nell3 developed a simple model of ran-
dom networks that demonstrates this
“small world” property. Our course
module enables students to construct
small-world networks and examine how
the average path length connecting two
nodes decreases rapidly as random,
long-range bonds are introduced into a
network consisting initially of only
short-ranged bonds (see Figure 1).

Computationally, this module intro-
duces students to data structures that
represent undirected graphs, object-
oriented encapsulation of those data
structures, and graph-traversal algo-
rithms. Python makes the development
of an undirected graph data structure ex-
ceedingly simple, a point made long ago
by Python creator Guido van Rossum in
one of his early essays on the language.4
In an undirected graph, nodes are con-
nected to other nodes by edges. A sim-
ple way to implement this is to combine
the two cornerstones of container-based
programming in Python: lists and dic-
tionaries. In our UndirectedGraph
class, a dictionary of network neighbor
connections (a neighbor dictionary)
maps a node identifier to a list of other
nodes to which the reference node is
connected. Because the graph edges are
undirected, we duplicate the connection
information for each node: if an edge is
added connecting nodes 1 and 2, the
neighbor dictionary must be updated so
that node 2 is added to node 1’s list of
neighbors, and vice versa.

We can, of course, hide the details of
adding edges inside an AddEdge

method defined on an Undirected
Graph class:

class UndirectedGraph:

...

def AddEdge(self, n1, n2):

“””Add an edge connecting

nodes n1 and n2”””

self.AddNode(n1)

self.AddNode(n2)

nd = self.neighbor_dict

if n2 not in nd[n1]:

nd[n1].append(n2)

if n1 not in nd[n2]:

nd[n2].append(n1)

In the small-world networks exer-
cise, we choose to label nodes simply
by integers, but Python’s dynamic typ-
ing doesn’t require this. If we were
playing the “six degrees of Kevin Ba-
con” game of searching for shortest
paths in actor collaboration networks,
we could use our code snippet to build
a graph connecting the names of actors
(encoded as strings). This dynamic typ-
ing allows for significant code reuse (as
described in the next section). Al-
though our UndirectedGraph class is
exceedingly simple and built to support
only the analyses relevant to our course
module, the same basic principles are
at work in a much more comprehen-
sive, Python-based, graph construction
and analysis package—NetworkX—
developed at Los Alamos National
Labs (http://networkx.lanl.gov).

Percolation
Percolation is the study of how objects
become connected (or disconnected) as
they’re randomly wired together (or
cut apart). It’s an important and classic
problem in the study of phase transi-
tions that has practical relevance as
well: the oil and gas industry, for
example, has shown considerable in-
terest over the years in percolation
phenomena because fluid is extracted
through a network of pores in rock.

Although percolation is tradition-
ally studied on regular lattices, it’s a
problem more generally applicable to
arbitrary networks, and in fact, we’re
able to reuse some of the code devel-

E D U C A T I O N

Figure 1. Node and edge betweenness
in a model of small-world networks.
Undirected edges (black lines) connect
nodes (red dots). Betweenness
measures how central each node and
edge is to the shortest network paths
connecting any two nodes. In this plot,
node diameter and edge thickness are
proportional to node and edge
betweenness, respectively.

MAY/JUNE 2007 77

oped in the small-world networks
module to support percolation stud-
ies. As noted earlier, Python’s dynamic
typing makes our definition of a node
in a graph very flexible; in a percola-
tion problem on a lattice, we can reuse
our UndirectedGraph class de-
scribed earlier by making node iden-
tifiers be lattice index tuples (i, j). We
can thus easily make an instance of
bond percolation on a 2D square lat-
tice of size L (with periodic boundary
conditions) and bond fraction p:

def MakeSquareBondPerc(L,p):

"""Constructs and returns

a bond percolation

instance on an LxL square

lattice with periodic

boundaries, where bonds are

filled with probability p"""

g = UndirectedGraph()

for i in range(L):

for j in range(L):

g.AddNode((i,j))

if random.random() < p:

g.AddEdge((i,j), \

((i+1)%L,j))

if random.random() < p:

g.AddEdge((i,j), \

(i,(j+1)%L))

return g

Figure 2 shows instances of percola-
tion networks generated by this proce-
dure. Students use breadth-first search
to identify all connected clusters in
such a network, and our PIL-based vi-
sualization tool colors each separate
cluster distinctly, taking as input a list
of all nodes in each cluster.

We also introduce the concept of
universality of phase transitions in the
course: despite their microscopic dif-
ferences, site-percolation on a 2D tri-
angular lattice and bond-percolation
on a 2D square lattice are indistin-
guishable from each other on long

length scales, and exhibit the same crit-
ical behavior (scaling exponents). Scal-
ing collapses are a useful construct for
revealing the universality of phase tran-
sitions, and typically involve trans-
forming the x and y axes in specified
ways to get disparate data sets to “col-
lapse” onto one universal scaling form.
With Python, we can support such
scaling collapses very flexibly by using
the built-in eval() function that eval-
uates expressions encoded as strings.
Rather than hard-coding particular
functional forms for scaling collapses,
we can simply encode and evaluate ar-
bitrary mathematical expressions.

Pattern Formation
in Cardiac Dynamics
Pattern formation is ubiquitous in spa-
tially extended nonequilibrium systems.
Many patterns involve regular, periodic
phenomena in space and time, but
equally important are localized coherent
structures that break or otherwise inter-
rupt these periodicities. Patterns lie at
the root of much activity in living tis-
sues: the regular beating of the human
heart is perhaps our most familiar re-
minder of the spatiotemporal rhymicity
of biological patterns. Cardiac tissue is
an excitable medium: rhythmic voltage
pulses, initiated by the heart’s pace-
maker cells (in the sinoatrial node),
spread as a wave through the rest of the
heart, inducing the heart muscle to con-

tract and thereby pumping blood in a
coherent fashion. In some situations,
however, this regular beating can be-
come interrupted by the presence of
spiral waves in the heart’s electrical ac-
tivity (see Figure 3). These spiral waves
generate voltage pulses on their own,
disrupting the normal heart’s coordi-
nated rhythm, leading to cardiac arry-
thmia. Our course module, which we
developed in conjunction with Niels
Otani of Cornell’s biomedical sciences
department, introduces a simple model
of cardiac dynamics—the two-dimen-
sional FitzHugh-Nagumo equations.5,6

The FitzHugh-Nagumo model de-
scribes the coupled time evolution of
two fields, the transmembrane potential
V and the recovery variable W (given
parameters !, " , and #):

.

Fixed-point solutions to the
FitzHugh-Nagumo equations come by
root-finding, which we accomplish us-
ing the brentq function in SciPy:

def FindFixedPoint(c, b):

“””Given parameters

c (gamma) and b (beta),

returns (v*,w*) for which

dv/dt=0 and dw/dt=0 for

∂
∂

= − +W
t

V Wε γ β()

∂
∂

= ∇ + − −V
t

V V V W2 31 3
ε

(/)

(a) (b) (c)

Figure 2. Two instances of bond-percolation on a 2D square lattice, and an
instance of site-percolation on a triangular lattice. In bond-percolation,
neighboring lattice points are connected with probability p, and connected
clusters in the resulting network are identified via breadth-first search.
Separate clusters are colored distinctly, for (a) a 10 ! 10 grid and (b) a 1,024 !
1,024 grid. In (c) site-percolation, lattice sites are filled with probability p, and
clusters connect the filled neighboring sites.

78 COMPUTING IN SCIENCE & ENGINEERING

FitzHugh-Nagumo model”””

f = lambda v, c, b: \

(v-(v**3)/3.)- \

((1./c)*(v+b))

vstar = brentq(f,-2.,2., \

args=(c, b))

wstar = ((1./c)*(vstar+b))

return vstar, wstar

We also introduce students to finite
difference techniques for computing
spatial derivatives in the solution of par-
tial differential equations (PDEs).
NumPy arrays represent the V and W
fields of the FitzHugh-Nagumo model,
and we can use stencil notation and ar-
ray syntax to compactly compute the
Laplacian of the voltage field, "2V(x, y).
We ask students to implement two dif-
ferent approximations to the Laplacian
operator (a five- and nine-point stencil),
and compare their effects on the detailed
form of propagating electrical waves.
The computation of the five-point sten-
cil is shown here:

def del2_5(a, dx):

“””del2_5(a, dx) returns

the finite-difference

approximation of the

laplacian of the array a,

with lattice spacing dx,

using the five-point stencil:

0 1 0

1 -4 1

0 1 0

“””

del2 = scipy.zeros(a.shape,

float)

del2[1:-1, 1:-1] = \

(a[1:-1,2:]+a[1:-1,:-2]+ \

a[2:,1:-1]+a[:-2,1:-1]- \

4.*a[1:-1,1:-1])/(dx*dx)

return del2

At this point, we provide an animation
tool that we wrote, based on PIL and
Tkinter, which lets students update the
display of the voltage field V at every
time step and use the mouse to intro-
duce local “shocks” to the system. These
shocks are both useful in initiating spiral
waves and in resetting the system’s
global electrical state as a defibrillator
might do. Optional extensions to the
module, which our collaborator Otani
developed, enable simulations of spon-
taneous pacemakers, dead regions of tis-
sue, and more complex heart-chamber
geometries, by letting the model’s vari-
ous parameters become spatially varying
fields themselves (again implemented via
NumPy arrays).

Gene Regulation
and the Repressilator
Gene regulation describes a set of
processes by which the expression of
genes within a living cell—their tran-
scription to messenger RNA and ul-
timately their translation to protein—is
controlled. While modern genome se-
quencing has provided great insights
into many organisms’ constituent parts
(genes, RNAs, and proteins), much less
is known about how those parts are
turned on and off and mixed and
matched in different contexts: how is it
that a brain cell and a hair cell, for
example, can derive from the same ge-
nomic blueprint but have such differ-
ent properties?

The Repressilator is a relatively sim-
ple synthetic gene regulatory network
developed by Michael Elowitz (now at
Caltech) and Stan Leibler at Rocke-
feller University.7 Its name derives
from its use of three repressor proteins
arranged to form a biological oscillator:
these three repressors act in a manner
akin to the “rock-paper-scissors” game,
in which TetR inhibits $cI, which in
turn inhibits LacI, which in turn in-
hibits TetR. Figure 4 shows a snapshot
of the Repressilator’s time evolution.

Important scientific and computa-
tional features emphasized in this mod-
ule are the differences between
stochastic and deterministic representa-
tions of chemical reaction networks.
(We first introduce these concepts in a
warm-up exercise, called Stochastic
Cells, in which students simulate a much
simpler biochemical network: one rep-
resenting the binding and unbinding of
two monomer molecules M form a sin-
gle dimer D: M + M # D.) We intro-
duce students to Petri nets as a graphical
notation for encoding such networks,
and then have them, from the underly-
ing Petri net representation, both syn-
thesize differential equations describing
the deterministic time evolution of the
system, and implement the Gillespie al-
gorithm (a form of continuous time
Monte Carlo) for stochastic simulation.8
Gillespie’s “direct method” involves
choosing a particular reaction and reac-
tion time based on instantaneous reac-
tion rates. For the Repressilator, this can
be done quite compactly using array op-
erations within NumPy/SciPy:

class StochasticRepressilator:

...

def Step(self, dtmax):

“””Execute one step of

the Gillespie direct

method by: (1) computing

instantaneous reaction

E D U C A T I O N

Figure 3. Snapshot in the time
evolution of the FitzHugh-Nagumo
model of cardiac dynamics. The
transmembrane voltage V is depicted
via a grayscale map (higher voltages
are in lighter gray). Spiral waves in
the voltage field can lead to cardiac
arrythmias by disrupting the normal
periodic rhythm generated by the
sinoatrial node.

MAY/JUNE 2007 79

rates, (2) getting an

exponentially distributed

random time from rates,

(3) choosing a random

reaction with probability

proportional to reaction

rate, (4) executing the

chosen reaction based on

its stoichiometry, and

(5) returning the time

at which the reaction

takes place”””

(1)

self.GetReactionRates()

(2)

tot_rate = sum(self.rates)

ran_time = -scipy.log(\

1.-random.random()) \

/tot_rate

if ran_time > dtmax:

return dtmax

(3)

ran_rate = tot_rate * \

random.random()

index = len(self.rates) \

- sum(scipy.cumsum(\

self.rates)> ran_rate)

reac = \

self.reactions[index]

(4)

for chem, dchem in \

reac.stoichio.items():

chem.amount += dchem

(5)

return ran_time

O ur course introduces students to
several other problems that we

can only mention in passing here. This
includes modules to study chaos and bi-
furcations in iterated maps; biolocomo-
tion in a simple model of a bipedal
walker; properties of random walks and
extremal statistics; connections between
NP-complete constraint satisfaction
problems and the statistical mechanics
of phase transitions; universality of

eigenvalue distributions in random ma-
trix theory; the emergence of collective
thermodynamic properties from mole-
cular dynamics; and phase transitions
and Monte Carlo algorithms in the
Ising model of magnetic systems.

We continue to look for new prob-
lems to add to this collection, and for
collaborators interested in contribut-
ing their scientific and computational
expertise to this endeavor. (Please con-
tact us if you have ideas for interesting
modules.) Our goal is to provide a
hands-on introduction to scientific
computing, and we hope that this
course can help serve several educa-
tional objectives in the part of a larger
curriculum in CSE.

Acknowledgments
We thank our colleagues who have
helped us develop computational mod-
ules and have given us useful feedback:
Steve Strogatz, Andy Ruina, Niels
Otani, Bart Selman, Carla Gomes, and
John Guckenheimer. We also thank all
the students who have completed our
course and have helped us work the bugs
out of exercises and solutions. Funding
from NSF awards DGE-0333366 and
DMR-0218475, and from the Cornell
Theory Center, helped support the de-
velopment of course modules.

References
1. J.P. Sethna, Statistical Mechanics: Entropy, Or-

der Parameters, and Complexity, Oxford Univ.
Press, 2006.

2. A.-L. Barabasi, Linked: How Everything Is Con-
nected to Everything Else and What It Means,
Perseus Publishing, 2002.

3. D. Watts and S. Strogatz, “Collective Dynam-
ics of ‘Small-World’ Networks,” Nature, vol.
393, no. 6684, 1998, pp. 440–442.

4. G. van Rossum, “Python Patterns: Imple-
menting Graphs,” 1998; www.python.org/
doc/essays/graphs/.

5. R. FitzHugh, “Impulses and Physiological States
in Theoretical Models of Nerve Membrane,”
Biophysical J., vol. 1, no. 6, 1961, pp. 445–466.

6. J. Nagumo, S. Arimoto, and S. Yoshizawa,
“An Active Pulse Transmission Line Simulat-
ing Nerve Axon,” Proc. Inst.of Radio Engineers,
vol. 50, no. 10, 1962, pp. 2061–2070.

7. M. Elowitz and S. Leibler, “A Synthetic Oscilla-
tory Network of Transcriptional Regulators,”
Nature, vol. 403, no. 6767, 2000, pp. 335–338.

8. D. Gillespie, “Exact Stochastic Simulation of
Coupled Chemical Reactions,” J. Physical Chem-
istry, vol. 81, no. 25, 1977, pp. 2340–2361.

Christopher R. Myers is a senior research
associate and associate director in the Cor-
nell Theory Center at Cornell University. For
more than a decade, he has advocated for
and explored the capabilities of Python-
powered computational environments in
physics, materials science, engineering, and
biology. Myers has a PhD in physics from
Cornell. Contact him at myers@tc.cornell.
edu; www.tc.cornell.edu/~myers.

James P. Sethna is a professor of physics at
Cornell University. He has a PhD in physics
from Princeton University. Sethna is the au-
thor of Statistical Mechanics: Entropy, Order
Parameters, and Complexity; www.physics.
cornell.edu/sethna/StatMech/. Contact him
via www.lassp.cornell.edu/sethna or sethna@
lassp.cornell.edu.

Figure 4. Snapshot in the stochastic
time evolution of the Repressilator.
Protein concentrations (back row),
mRNA concentrations (middle) and
promoter states (front) are shown. At
this instant, TetR (red) concentration is
high, leading to suppression of !cI
(yellow). Because !cI is low, however,
LacI (green) concentration can grow,
leading to TetR’s eventual suppression.

