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Epidemic fronts in complex networks with metapopulation structure
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Infection dynamics have been studied extensively on complex networks, yielding insight into the effects of het-
erogeneity in contact patterns on disease spread. Somewhat separately, metapopulations have provided a paradigm
for modeling systems with spatially extended and “patchy” organization. In this paper we expand on the use of
multitype networks for combining these paradigms, such that simple contagion models can include complexity in
the agent interactions and multiscale structure. Using a generalization of the Miller-Volz mean-field approximation
for susceptible-infected-recovered (SIR) dynamics on multitype networks, we study the special case of epidemic
fronts propagating on a one-dimensional lattice of interconnected networks—representing a simple chain of
coupled population centers—as a necessary first step in understanding how macroscale disease spread depends
on microscale topology. Applying the formalism of front propagation into unstable states, we derive the effective
transport coefficients of the linear spreading: asymptotic speed, characteristic wavelength, and diffusion coeffi-
cient for the leading edge of the pulled fronts, and analyze their dependence on the underlying graph structure. We
also derive the epidemic threshold for the system and study the front profile for various network configurations.
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I. INTRODUCTION

Network theory has proven a powerful framework for
studying the effects of randomness and heterogeneity on the
dynamics of interacting agents with nontrivial connectivity
patterns [1]. One of the most important applications of
this work is to the spread of infectious diseases among
human populations, where the interaction structure is highly
complex, showing salient features such as power-law degree
distributions, small average path lengths, and modularity [2,3].
Various models have been proposed, primarily with random
graph configuration, that incorporate these complex features
while remaining theoretically tractable. Within the context of
disease dynamics, graph nodes are generally taken to represent
individuals, and edges to represent interactions between them,
through which infection can spread. Both deterministic and
stochastic infection dynamics have been studied on networks
as well as bond percolation for the associated branching
process [4–8]. How various thermodynamic quantities of
interest, such as the total proportion infected, the epidemic
(percolation) threshold, and the distribution of small outbreak
sizes, depend upon network topology is of great interest.

Often these approaches disregard the multiscale organi-
zation of many real systems, in which agents can be most
naturally thought of as partitioned into densely connected
communities with sparser coupling among neighboring com-
munities. In some cases, it may be useful to conceptualize
the topology as a network of networks, where agent-to-
agent interactions and community-to-community interactions
are both useful representations depending on the scale of
resolution [9]. The latter has been successfully developed
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in ecology, with a network of interconnected populations
referred to as a “metapopulation” [10,11]. This framework
is very useful in studying large-scale propagation of dis-
eases where most infection transmission occurs in localized
regions, but can be transported on larger scales by the
mobility of individuals, traveling among population centers
[12]. However, most metapopulation models assume that
populations are fully mixed, with no inherent complexity
in the connectivity between agents. Much less understood
is how the multiscale structure of agent interactions affects
the larger-scale propagation of infectious processes through
interconnected networks [13,14].

In this paper, we expand on a possible avenue for addressing
this question using a multitype generalization of random
graphs with simple, metalevel topology [9,15], and a dynami-
cal mean-field theory for the SIR infection model in multitype
configuration model networks. Putting these together, we
analyze the average infection dynamics and propagating front
profile on a simple metapopulation composed of coupled
population centers on a one-dimensional lattice and calculate
the phenomenological transport properties of the system as
functions of the underlying network’s degree distributions.
Our results are compared to stochastic simulations of the
infection kinetics on various networks and found to be in
good agreement in the thermodynamic limit. Broadly, we
present this work as an illustration of how well-developed
ideas from different areas of statistical physics and ecology
can be naturally combined.

II. MULTITYPE CONFIGURATION MODEL NETWORKS

In order to incorporate relevant node attribute information
into our network models, (generically applicable for such
things as age, sex, ethnicity, and place of residence), we
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use a generalization of configuration model random graphs,
wherein nodes are assigned a type from an arbitrary set of M
possible types and a degree to each type from an arbitrary joint
distribution for degree types, Pi(k1,k2, . . . ,kM ) = Pi("k), with
degree kj denoting the number of connections to nodes of type
j [1,9,15]. Additionally, nodes of type i occupy a fraction
of the total network wi , where

∑
i wi = 1. Following the

configuration model prescription, we consider graphs chosen
uniformly at random from the ensemble of possible graphs
with the prescribed degree distributions and self-consistent
edge constraint: wi

∑
"k kjPi("k) = wj

∑
"k′ k′

iPj ( "k′),∀(i,j )
[1,15,16].

From this formalism, a variety of quantities can be
described compactly using generating functions [1,17]. The
generating function for the probability of a randomly selected
node of type i to have degree "k, is given by

Gi("x) =
∑

"k

Pi("k)
M∏

l=1

x
kl

l : (1)

written as a power series in "x, an auxiliary variable defined
over the unit interval, with expansion coefficients equal to the
respective probabilities. Moments of the degree distributions
can be represented simply as derivatives of the corresponding
generating function. For example, the average degree of a type
i node to a type j node is

∑

"k

kjPi("k) = ∂xj
Gi("x)|"1 ≡ 〈kj 〉i . (2)

Since node interactions occur along edges, an important
quantity in network models is the excess degree: the number
of neighbors a node has which can be reached by selecting a
randomly chosen edge, and not including the neighbor on the
end of the selected edge. For a multitype configuration model
network, the probability that a randomly chosen edge from a
type i node leads to a type j node with degree "k is proportional
to kiPj ("k), and thus the probability for the corresponding
excess degree is generated by ∂xi

Gj ("x)/∂xi
Gj ("x)|"1 [15], with

average degree to type l nodes,

〈kl〉i−j = ∂xl
∂xi

Gj ("x)|"1
∂xi

Gj ("x)|"1
= 〈klki〉j

〈ki〉j
− δil . (3)

By construction, this framework lacks two-point correlations,
in which the excess degree distributions depend on the degrees
of both nodes sharing an edge [3].

III. MILLER-VOLZ MEAN-FIELD SIR
IN MULTITYPE NETWORKS

In this report we consider simple dynamics for dis-
ease spread: the susceptible-infected-recovered (SIR) model,
wherein each individual is assigned a disease state, Y ∈
{S,I,R}, and may undergo reactions to other states depending
on its state and the state of its neighbors. In this model, if a
node of type i is susceptible and has a single infected neighbor
of type j , then it will change its state to infected with a
constant probability per unit time βji . Likewise, an infected
node of type i will recover with a constant probability per unit
time γi . Since the underlying dynamics is a continuous time

Markov process, a complete analysis would describe the full
probability distribution for all system trajectories. However
for our purposes, it will be sufficient to focus on the behavior
of extensive outbreaks (i.e., those which scale with the system
size), the average dynamics of which can be derived in the
limit when the number of nodes tends to infinity, by applying
a generalization of the mean-field technique developed by
Miller and Volz [18]. Below, we follow the basic structure
of the derivations presented in Refs. [20,21].

In the thermodynamic limit, configuration model random
graphs are locally treelike [16], which by construction allows
them to satisfy many of the generic criteria for the applicability
of mean-field theory assumptions [22]. In our case, we assume
that nodes are differentiated by their degree and disease state
alone and that susceptible nodes feel a uniform force of
infection along every edge, related to the average number of
edges connecting susceptible and infected nodes at any given
time in the network: a Curie-Weiss type approximation [23].
Furthermore, from the perspective of susceptible nodes, all
infection attempts along different edges can be treated as
uncorrelated—a consequence of the local treelike property
[5,16,20]—and thus we assume that the states of neighbors of
susceptible nodes are effectively independent.

Let the probability that a node of type j has not transmitted
the infection to a node of type i along a randomly chosen i-j
edge, be θij . This quantity is interpretable as the complement
of the average cumulative hazard function along such edges.
Given θij , it follows that the fraction of susceptible nodes of
type i at time t is

Si(t) =
∑

"k

Pi("k)
M∏

j=1

θ
kj

ij (t)

= Gi[θi1(t),θi2(t), . . . ,θiM (t)]

≡ Gi["θi(t)]. (4)

The fractions of infected and recovered nodes of type i
follow from probability conservation, Si + Ii + Ri = 1, and
a constant recovery rate for infected nodes γi

dIi

dt
= −d "θi

dt
· "∇Gi("x)

∣∣∣∣
"θi

− γiIi ,
dRi

dt
= γiIi , (5)

with the total fraction of susceptible nodes

S =
∑

i

wiGi("θi) ≡ "w · "G(θ ). (6)

The central probability and order parameter, θij , can be
subdivided into three compartments depending on the disease
state of the terminal node j ,

θij = θS
ij + θ I

ij + θR
ij , (7)

and its dynamics determined by tracking the fluxes among
these compartments. Since θ can only change when an infected
node transmits the disease, the rate at which θij changes is
equal to the rate at which a corresponding neighbor infects,
and therefore dθij = −βjiθ

I
ij dt . Similarly, since θR can only

change if an infected node recovers, the rate at which θR
ij

changes is equal to the rate at which a corresponding neighbor
recovers, and thus dθR

ij = γjθ
I
ij dt . Lastly, the probability that

a type j neighbor of a type i node has not transmitted and
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is susceptible, θS
ij , is simply the probability that the corre-

sponding neighbor is susceptible. Because this neighbor could
not have been infected along any of its other edges and has
excess degree distribution generated by ∂xi

Gj ("x)/∂xi
Gj ("x)|"1,

it follows that θS
ij = ∂xi

Gj ("x)| "θj
/∂xi

Gj ("x)|"1. Combining the
latter with the two flux relations and the initial conditions (7),
θij (0) = 1 and θR

ij (0) = 0, we find

dθij

dt
= βji

(
∂xi

Gj ("x)|"θj

∂xi
Gj ("x)|"1

− θij

)
+ γj (1 − θij ). (8)

These M2, first-order, and coupled ODEs, θ̇ = F (θ), define
the full system’s approximate mean dynamics, and form the
basis of our subsequent analysis. For a more detailed derivation
of the analogous results for the special case of a single type
network, see [18–21].

The steady state is given by the fixed point of (8),

θ̄ij = (1 − Tji) + Tji

∂xi
Gj ("x)| "̄θj

∂xi
Gj ("x)|"1

, (9)

which upon substitution into (4), gives the cumulative infec-
tion, P = 1 − S, at equilibrium (i.e., the final epidemic size),
with Tji = βji/(βji + γj ) the corresponding bond percolation
probability, or transmissibility [15]. This can have a nontrivial
solution corresponding to the existence of extensive outbreaks,
if the disease-free state, θij = 1 ∀(i,j ), is unstable. The
threshold or phase transition, which signifies the region in
parameter space that separates the epidemic and nonepidemic
phases, can be obtained through a stability analysis of the
disease-free state, where the eigenvalue of the Jacobian for (8)
with the largest real part, is real and vanishes when

det(N − I ) = 0, with N(i,j )(k,l) = Tjiδjk〈kl〉i−j (10)

an M2xM2 matrix [24]. Similar results for the equilibrium
properties are derivable from a multitype bond percolation
approach [15].

IV. FRAMEWORK FOR MULTISCALE NETWORKS

Of interest to us are systems where type structure adds an
additional scale of relevant topology, and not just demographic
complexity [9,15]. For instance, we can apply the multitype
network formalism to a simple model for a metapopulation
by affiliating population centers with node types and coupling
among populations with edges connecting their constituent
nodes. In this way, a complex topology can be encoded
on a microscale with a macroscale adjacency matrix, A,
describing which populations are directly connected through
node interactions [9]. We envisage example systems where
A describes the connectivity among urban centers, such as
cities, towns, or villages, facilitated by roads or airlines. By
conceptualizing the topology in this manner, we can study the
phenomenology of infection propagation among population
centers and describe how the propagation properties depend on
the underlying connectivity patterns. A schematic is shown in
Fig. 1(a) for a simple system with the pertinent structure. More
broadly, we advance this approach as an avenue for combining
the frameworks of network theory, metapopulations, and front
propagation, which will be particularly useful if the interaction
topology is coherent after some level of coarse graining.

FIG. 1. (Color online) (a) A schematic of SIR dynamics on a
metapopulation, where infection spreads along edges connecting
nodes of various types at the finest scale (shown with integer,
population labels), and the macroscale topology identifies which
populations are connected through agent interactions. (b) An example
of this framework, in which the macroscale topology takes the form
of a one-dimensional (1D) lattice. In Sec. V, we focus on a simple
case with configuration model construction, where each site has an
identical degree distribution, specifying the probability of having a
given number of internal (0), right (+), and left (−) external edges
(shown above with labels for site i), and calculate the velocity, v∗,
growth rate, s∗, and spatial decay rate, q∗, for infection fronts.

V. 1D LATTICE METAPOPULATION DYNAMICS

To illustrate this approach, we consider a special case of
the above where the macroscale topology is an infinite one-
dimensional (1D) lattice, M → ∞, in which agents interact
with other agents of the same type and agents of neighbor-
ing types, Anj = (δj,n + δj,n+1 + δj,n−1) [12]. If infection is
started at a single site (e.g., site 0) in a fully susceptible
system, a strict directionality applies: in order for site i to be
infected, sites i − 1,i − 2, . . . must be infected first. In such a
case, we expect a well-defined infection front to propagate
through the lattice. In keeping with the above, we focus
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on an effective force of infection model among populations
with static configuration networks having prescribed degree
distributions, a generalization of the paradigmatic, spatial
SIR model in one dimension, where the assumption of well
mixed populations is relaxed to include complexity in agent
interactions [11,25]. A schematic is shown in Fig. 1(b).

Since each node has three edge types, the mean equa-
tions of motion describe a three-component field, "θn(t) ≡
(θnn,θnn+1,θnn−1) ≡ [θ0

n (t),θ+
n (t),θ−

n (t)], where (0), (+), and
(−) denote internal, right-external, and left-external edges,
at the corresponding site. For simplicity, homogeneity is
assumed, with β, w, γ , and G all uniform, reducing the field
equations to

dθ0
n

dτ
=

(
1 − θ0

n

)
+ T

(
G0("θn)

G0("1)
− 1

)

(11)
dθ±

n

dτ
= (1 − θ±

n ) + T

(
G∓("θn±1)

G∓("1)
− 1

)
,

where the time, τ , is measured in units of 1/(β + γ ), and
the subscript in G denotes a partial derivative with respect
to the corresponding variable. For edge number consistency,
G+("1) = G−("1), but in general we allow for other asymmetries
in the degree distributions.

A. Dispersion relation and transport coefficients

To understand the spatiotemporal dynamics (11), we
first quantify how perturbations away from the unstable
state propagate by linearizing the dynamics around the
disease-free equilibrium, "θn(t) = "1 − "εn(t), and decoupling
the perturbations into basis modes using the inverse discrete
Fourier transform, "εn(t) = 1

M

∑M−1
ν=0 "εν(t)ei(2πνn/M), (IDFT).

The dispersion relation can be found by substituting the IDFT
into (11) and using the basis properties of orthogonality and
completeness. In the limit M → ∞ the site perturbations
approach the integral, "εn(t) = 1

2π

∫ 2π

0 "ε(k)ei[kn−ω(k)t]dk.
With this prescription, we find the dispersion relation takes

the form of a cubic, characteristic equation

det
(

Ke(q) − 1+s(q)
T

I

)
= 0, with

Ke(q) =





〈k2
0 〉

〈k0〉 − 1 〈k0k+〉
〈k0〉

〈k0k−〉
〈k0〉

〈k−k0〉
〈k−〉 e−q 〈k−k+〉

〈k−〉 e−q
( 〈k2

−〉
〈k−〉 −1

)
e−q

〈k+k0〉
〈k+〉 eq

( 〈k2
+〉

〈k+〉 −1
)
eq 〈k+k−〉

〈k+〉 eq




, (12)

which for convenience, is written in terms of s and q, where
ω = is and k = iq [Fig. 1(b)]. Interestingly, this method
reveals a generalization of the average excess degree matrix,
Ke(0), whose elements are found by selecting a randomly
chosen edge in a particular direction, and counting the average
number of reachable neighbors of a particular type, for the
interconnected network system, Ke(q), which incorporates the
relative states of adjacent sites on the lattice for each mode q.
We expect this operator to emerge in similar problems on
interconnected networks.

Combining the above with the behavior of infection near
the phase transition, where there is no exponential growth in
time and each site has the same field value, "θ (n) = "1: s → 0
and q → 0 (12), we find a simple condition for the critical
transmissibility Tc

Tc = 1
λk

m(0)
, (13)

where λk
m(q) is the maximum eigenvalue of Ke(q), with λk

m(0)
corresponding to Ke(0). Because the addition of external
edges increases the spreading capacity of the disease, the
critical transmissibility in the coupled system is less than the
uncoupled case, implying that transport-mediated infections
from neighboring sites can sustain epidemics even when
individual populations on their own cannot [13,14].

Also from the dispersion relation, we can find the asymp-
totic transport coefficients for rightward moving disturbances
by making a standard saddle-point approximation of the per-
turbations’ integral representation in Fourier space: expanding
the integrand around its dominant contribution, k∗, in the
comoving frame, ξ = n − v∗t ,

ei[kn−ω(k)t] ∼ eikξeit(kv∗−ω(k∗)− dω
dk

|k∗ (k−k∗))e
−it(k−k∗ )2

2
d2ω

dk2 |k∗

and taking the infinite time limit while enforcing approximate
constancy with no exponential growth and ξ finite, where v∗

is the asymptotic speed at which perturbations to the unstable
state propagate [26]. This procedure uncovers an exponential
moving pulse for the leading edge of the infection profile with
a diffusive correction [26]

1 − θ ∼ e−q∗ξe−ξ 2/4D∗t

√
D∗t

, (14)

where q∗, v∗, and D∗ satisfy the saddle-point relations

v∗ = ds

dq

∣∣∣∣
q∗

= s(q∗)
q∗ = T

dλk
m

dq

∣∣∣∣
q∗

= −1 + T λk
m(q∗)

q∗ (15)

and D∗ = 1
2

d2s

dq2

∣∣∣∣
q∗

= T

2
d2λk

m

dq2

∣∣∣∣
q∗

, (16)

giving a transcendental equation for q∗, which corresponds
to the selection of the minimum velocity, v∗, from the front’s
spectrum of exponential modes, est−qn, with velocities, v(q) =
s(q)/q [Fig. 1(b)] [25,26]. If multiple solutions exist for the
minimum, the fastest solution is selected [26].

When the average excess degree matrix is irreducible (the
domain of interest to us), the dominant growth exponent
for each q is real and corresponds to a positive and unique
eigenvector (12) [24], and thus we expect the same selected
velocity for all field components, "θ(n) [27]. Furthermore, the
fields propagate in this regime with approximate proportions
"1 − ε(t) "Q(q∗,s∗), where "Q(q∗,s∗) is the corresponding mode
of Ke(q∗) (12). The characteristic wavelength, 1/q∗, is related
to the asymptotic size of the front’s leading edge, and diverges
near the phase transition. The diffusion coefficient, D∗, gives
the effective widening of the mean-field pulse in the comoving
frame and is proportional to the largest finite-size correction
to v∗ in the limit where the number of nodes at each site tends
to infinity.
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In order to uncover the principal dependencies of the
transport coefficients, we study (12)–(16) near the phase
transition, where the power series expansion for the dispersion
relation is a convenient representation; the latter is found
by substituting [s(q) + 1]/T = a + bq + c

2q2 + · · · into (12),
and equating powers in q. When s∗ and q∗ are small in the
vicinity of Tc, the expansion can be truncated at low order,
giving a Fisher-Kolmogorov-like dispersion relation with the
approximate scaling

s∗ ∼
[
T λk

m(0) − 1
]

v∗ ∼
[
T λk

m(0) − 1
] 1

2 D∗ 1
2

q∗ ∼
[
T λk

m(0) − 1
] 1

2 D∗− 1
2

D∗

T λk
m(0)

∼ δ (17)

δ =
〈k−k0〉〈k0k+〉

〈k−〉〈k0〉 + 〈k−k+〉
〈k−〉

(
λk

m(0) − 〈k2
0 〉

〈k0〉 +1
)

[
λk

m(0) − λk
2(0)

][
λk

m(0) − λk
3(0)

] ,

where λk
2(0) and λk

3(0) are the subdominant eigenvalues of
Ke(0). In this regime, we find an effective reaction-diffusion
behavior with the generic dependence of the shape and speed
of the propagating front’s leading edge on the reproductive
number T λk

m(0) (a product of the spreading capacity along
edges and the magnitude of topological fluctuations) and on
the normalized diffusion coefficient δ: measuring the relative
strength of connection between lattice sites (17). We see that
the effective reaction rate is equal to the distance from the phase
transition, T λk

m(0) − 1, and that all coefficients grow from zero
with this distance, except for D∗, which varies discontinuously
through Tc. Furthermore, the normalized diffusion coefficient
increases from zero with 〈k−k0〉〈k0k+〉 and 〈k−k+〉 – the
correlation moments of the degree distribution which encode
the propensity for transport from the i ∓ 1 site to the i ± 1
site (both of which cannot be zero, otherwise epidemics are
locally confined), and with the viability of subdominant modes
to support growth. In general, we find that as δ increases v∗ and
D∗ increase, q∗ decreases, and s∗ remains constant, implying
faster transport and greater similarity among sites, as more
edge-type pairs allow for traversing the lattice, but with little
change in the growth exponent.

The above demonstrates the typical trend for these mod-
els, that the front dynamics is strongly influenced by the
joint degree distribution’s second moments (i.e., the relevant
excess degree properties are generally amplified by correlation
among degree types and degree heterogeneity). For example,
in analogy with the single network case, fast transport can be
achieved with the presence of a few nodes with large internal
and external degrees, or “transport hubs”, even if the average
degrees in the network are small [2,3].

B. Simple mixing example

Additional understanding of the basic form of the transport
coefficients is gained by looking at a special case of the
microscale degree distribution, where the generating function
takes the form G[px0 + 1−p

2 (x+ + x−)], with total degree
described by G, and a given edge connecting nodes of the
same site with probability p, and nodes of left and right
neighboring sites with equal probability (1 − p)/2, where
1 − p is an effective mixing parameter among populations.
With this prescription, the critical transmissibility is reduced

to the inverse of the total-edge excess degree, Tc = G′(1)
G′′(1) ,

and the normalized diffusion coefficient, to the fraction of
external edges in a each direction, δ = (1 − p)/2. Moreover,
the dispersion relation takes the instructive form

s(q) = −1 + T G′′(1)
G′(1)

[p + (1 − p) cosh(q)], (18)

where s + 1 is given by the basic reproductive number
multiplied by the average relative incidence, e−-xq , on the
end of a randomly selected edge, illustrating the intuitive
generalization of the single network case, where different edge
types are more and less likely to connect to infected nodes
depending on their place in the lattice, and thus to contribute
to local growth.

Likewise, from (15) and (16), we find the speed and
diffusion coefficient,

v∗ = T G′′(1)
G′(1)

(1 − p) sinh(q∗) (19)

and

D∗ = T G′′(1)
2G′(1)

(1 − p) cosh(q∗), (20)

where q∗ satisfies (15), and v∗ is given by the basic repro-
ductive number multiplied by the average product of relative
position and incidence, −-xe−-xq∗

, on the end of a randomly
selected edge. Figure 2 shows the transport coefficients (18)–
(20), as functions of T/Tc and p, with partial scaling collapse
(17) for the corresponding class of network configurations.
The expected reaction-diffusion scaling can be observed near
the critical point, and far away from the critical region,
when T / Tc, q∗, s∗G′(1)

T G′′(1) ,
v∗G′(1)
T G′′(1) , and D∗G′(1)

T G′′(1) tend to limiting

FIG. 2. (Color online) The transport coefficients for a one-
dimensional lattice of configuration model networks with arbitrary
total-degree distribution and inter-population mixing parameter
1 − p, shown as functions of the latter (Sec. V B): q∗ (a), s∗ (b), v∗ (c),
and D∗ (d). The colored regions mark the range of each coefficient,
which are bounded by the critical-region scaling (T ! Tc), and the
limiting behavior (T / Tc), delineated by dashed and solid curves
respectively; the former are straight lines, signifying agreement with
the predicted scaling (17). Each panel’s arrow indicates the direction
of increase in the distance from the phase transition, T/Tc − 1.
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curves which depend only on 1 − p, suggesting the intuitive
asymptotic proportionality to the reproductive number.

C. Pulled front classification

In order to connect the transport properties of the linear
equations to the full nonlinear system, we refer to the
classification of fronts propagating into unstable states, which
in our system is the fully susceptible metapopulation lying
ahead of the infection front. In general, there are two types of
deterministic fronts: pulled and pushed, with the former having
fronts with asymptotic speed equal to the linear spreading
speed and the latter having fronts with asymptotic speed
greater than the linear spreading speed [26]. Pushed fronts
occur because nonlinearities in the equations of motion tend
to increase the growth of perturbations on the unstable state,
resulting in nontrivial front shape dependence of the speed.
However, in our system all nonlinearities are proportional to
probability generating functions, ∼G′(θ )/G′(1) (11), which
are monotonically increasing over the unit interval. Therefore,
all nonlinearities tend to increase θ , and consequently dampen
the growth of infection, a sufficient condition for pulled fronts
[28], and thus we anticipate fronts in this model to be pulled;
this agrees with the intuition that epidemic propagation is
governed by its behavior in a fully susceptible population. In
practice, the classification has importance for control strategies
in systems with similar structure, implying that to mitigate
the spread of infection among populations, efforts should be
focused on the leading edge of the front, and not on larger
outbreaks occurring farther behind.

D. Relaxation properties

In addition to quantifying the transport, the front speed can
be used to extract information about the dynamics away from
the unstable state. As shown above, the "θ field settles onto
a solution with translational similarity, "θn±x(t) = "θn(t ∓ x

v∗ ),
after an initial transient period. Behind the leading edge of the
front, the behavior resembles a relaxation to the stable equilib-
rium (9), "θn(t) ≈ "̄θ + "η(t − n

v∗ ) ≈ "̄θ + "ηe−z∗(n−v∗t), where the
spatial rate, |z∗|, is the dominant eigenvalue of the nonlinear
eigenvalue equation

det
(

G′
e("̄θ ,z∗) − 1+v∗z∗

T
I

)
= 0, with

G′
e("̄θ,z) =





G00

G0("1)
G0+
G0("1)

G0−
G0("1)

G−0

G−("1)
e−z G−+

G−("1)
e−z G−−

G−("1)
e−z

G+0

G+("1)
ez G++

G+("1)
ez G+−

G+("1)
ez





∣∣∣∣∣∣∣∣∣"̄θ

. (21)

The latter is the analog of Ke(q) at the stable state, which does
not depend on the first two moments of the degree distribution
directly, but on the generating function’s properties near the
equilibrium (9). In general, the two characteristic spatial rates
for this system are not equal, |z∗| 1= q∗, and when their
difference is large, it often signifies a significant separation
in the time scales of growth, 1/s∗, and relaxation 1/v∗|z∗|.
The latter provides an estimate for the amount of time a site is

infectious, with 1/|z∗| yielding a related estimate for the width
of the propagating front (i.e., the typical spatial extent of an
outbreak at a given time). In particular, when the front speed
is very fast and the degree distribution’s second moments are
large with the first moments O(1), we find that |z∗| 2 q∗,
which suggests broad front profiles. In this case, propagation
and relaxation can be thought of as approximately distinct
processes.

VI. COMPARISON WITH STOCHASTIC SIMULATIONS

The above predictions for the mean-field dynamics on the
one-dimensional metapopulation were compared to stochas-
tic simulations of SIR dynamics on random instances of
multiscale, metapopulation networks, using Gillespie’s direct
method [11,29,30]. The graphs were constructed using the
multitype configuration model by first generating a degree
sequence from the desired degree distribution and then
connecting pairs of edge “stubs”, selected uniformly at random
[2,15,16]. An outbreak was started by choosing one node from
the first lattice site to be infected with all others susceptible.
Only outbreaks which lead to epidemics withO(N ) cumulative
infection were considered for comparison with mean-field
predictions. In order to ignore fluctuations in the initial
transients, time was zeroed after the first 100 reactions.

We are interested in the average shape of the front that
connects the fully susceptible unstable state lying ahead of
the infectious wave and the fully recovered (equilibrium) state
lying behind it. The average shape was computed by taking
instantaneous “snapshots” of the profile for each stochastic
realization, conditioned on the middle lattice site having
cumulative infection equal to half the equilibrium value (9),
and averaging the cumulative infection of the other sites over
different realizations. In general, the snapshots did not occur at
the same instant; however, aligning fronts based on a common
level of infection eliminates some of the effects of diffusive
wandering [Fig. 3(b)]. The measured fronts were compared to
the mean-field profiles by integrating the lattice equations (11).
A comparison is shown in Fig. 3 for two graphs with scale-free
and Poisson degree distributions, with generating functions

GS.F.("x) = Liα[e−1/Kx0(1 − ν + νx+)(1 − ν + νx−)]

and

GP ("x) = exp{C[x0(1 − ν + νx+)(1 − ν + νx−) − 1]},

where Liα is the polylogarithm function with exponent α [2].
The parameters for the degree distributions were chosen such
that each network had the same average degree and cloning
parameter, ν (i.e., given a specified internal degree distribution,
each of a node’s internal edges is copied to form an external
edge with probability ν), but with different inherent levels of
heterogeneity.

We see in Fig. 3 that the epidemic front is broader in the
scale-free network than in the Poisson. This difference comes
from the much larger front speed of the former, which had
average excess degrees an order of magnitude larger than
the latter, (12) and (15), and the relatively similar relaxation
times (21) for the two classes of networks (implying that the
time scale over which a site is infectious in each network
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FIG. 3. (Color online) (a) A comparison between the average
cumulative infection profile for stochastic simulations of SIR dy-
namics on a one-dimensional lattice of scale-free (blue/lower) and
Poisson (green/upper) networks and mean-field predictions. Various
site sizes are shown with different symbols and color shades, varying
from light to dark for 103 to 4 × 105 respectively. Front shapes for
increasingly large sizes are found to converge to the mean-field front.
The parameters for the graphs were chosen to be: K = 100, α = 2
and ν = 0.3 for the scale-free, and C = 2.901 57 and ν = 0.3 for the
Poisson (Sec. VI). A lattice of 50 sites was used, which was large
enough to ensure uniformity with the above parameters and reaction
rates β = γ = 1. The arrow indicates the propagation direction.
(b) An ensemble of stochastic fronts conditioned on the middle lattice
site having cumulative infection equal to half the equilibrium value
(9). Because the infection fronts for different stochastic realizations
are offset from one another in time, we align all fronts based on a com-
mon level of infection, and then average over realizations (Sec. VI).

is roughly the same). In the more homogeneous Poisson
networks, the front is more narrow and propagates through the
lattice on the same time scales as the local infection dynamics;
whereas in the scale-free case, the leading edge of the front
propagates quickly through the lattice, followed by a slower
relaxation to the stable equilibrium state behind the front.
This comparison shows that assumptions of homogeneity can
drastically underestimate the speed and extent of fronts in
systems with heterogenous interactions.

Additionally, the front speed v was numerically estimated
from the average time 〈τprog〉 required for the leading edge of
the front to move forward by one lattice site (where the leading
edge was defined as that site where the incidence first reached
a set O(1) level) and averaging over such levels; i.e., 1/v =
〈τprog〉, once the initial spatial variation had decayed. Figure 4
shows the convergence of the measured speed from simulations
to the mean-field prediction for each graph as a function of
the steady state, cumulative infected population size at every
lattice site, N̄ = P̄N (Sec. III), with total size N . The lines
represent fits to the expected scaling of the largest finite-size
correction for pulled fronts, v∗ − vN̄ ∼ D∗q∗π2

ln2(N̄)
, obtained from

a general 1/N̄ cutoff in the mean-field equations [26,28,31];
the coefficients are found to beO(1) of the expected scaling. In
general, higher-order corrections in N̄ must be calculated from

FIG. 4. (Color online) (a) Convergence of the average velocities,
vN̄ , to the mean-field predictions, v∗, for scale-free and Poisson
networks (Fig. 3) as functions of the cumulative number of infected
nodes at each site, shown with fits to the expected pulled front scaling,
v∗ − vN̄ ∼ D∗q∗π2

ln2(N̄)
(Sec. VI).

an analysis of the full, stochastic system [28]. The very slow
convergence in N̄ comes from the transport dependence on
the linearized equations where infinitesimal infection levels
apply and sensitivity to stochastic effects is highest. This
can be seen in the fairly large finite-size corrections to the
velocity, particularly for the scale-free network, leading to
a more narrow conditionally averaged front relative to the
mean-field, with fewer sites initiated at a given time (Fig. 3).

Finally, the average epidemic profile and transmissibil-
ity threshold, (9) and (13), were compared to simulations.
Figure 5 plots those comparisons for a system with left-right

FIG. 5. (Color online) The average epidemic fraction at each site
for a network with asymmetric generating function (Sec. VI) and
varying transmissibilities. The point where the epidemic vanishes
agrees with the prediction, Tc = 0.115 (13). Sites were occupied by
20 000 nodes on a lattice of 100 sites.
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asymmetric generating function

GAsym("x) = 1
3

(
2x2

0x2
+x4

− + x4
0x6

+x2
−
)
,

on a lattice of 100 sites, with 20 000 nodes on each site.
Both the epidemic size for various transmissibilities and the
threshold were found to be in good agreement with mean-field
predictions, though the finite-size effects became increasingly
important as the critical region was approached, leading to
significantly smaller outbreaks near the edges of the lattice.

VII. CONCLUSION

In this paper we developed a framework for studying
infection dynamics in multiscale metapopulations, combining
multitype networks and a mean-field theory, to explore how
macroscale disease propagation depends on microscale inter-
action structure. As a necessary first step in this direction, we
applied the approach to a simple metapopulation model for a
chain of coupled populations, and derived the transport proper-
ties for infection, including their scaling with the disease trans-
missibility and the statistical properties of the underlying net-
work. We also found a threshold for the viability of epidemics,
and calculated the relaxation properties of the propagating
front. These were compared for different network models, with
heterogeneous networks having considerably higher speeds
and broader fronts than their homogeneous counterparts,

illustrating the importance of including complexity in the
fine-scale topology in order to accurately capture transport
phenomenology.

Various extensions of the work presented, both in terms of
analyses carried out and systems studied, could be considered.
We have addressed here only the average dynamics of the one-
dimensional, homogeneous system, without any description
of finite-size fluctuations, or consideration of the dynamics in
higher-dimensional generalizations. Greater complexity could
be introduced through the spatiotemporal dependence of net-
work parameters, and/or more general network configurations
[32]. An interesting extension of the model discussed here
would include dynamic contacts between nodes and explicit
mobility, instead of the assumed time-scale separation between
topology and the overlying process [12,33,34]. However, the
basic formalism presented here can enable one to study such
factors and build more realistic models for infectious processes
in multiscale problems.
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