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Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics
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Branching processes have served as a model for chemical reactions, biological growth processes, and contagion
(of disease, information, or fads). Through this connection, these seemingly different physical processes share
some common universalities that can be elucidated by analyzing the underlying branching process. In this work
we focus on coupled branching processes as a model of infectious diseases spreading from one population to
another. An exceedingly important example of such coupled outbreaks are zoonotic infections that spill over from
animal populations to humans. We derive several statistical quantities characterizing the first spillover event from
animals to humans, including the probability of spillover, the first passage time distribution for human infection,
and disease prevalence in the animal population at spillover. Large stochastic fluctuations in those quantities can
make inference of the state of the system at the time of spillover difficult. Focusing on outbreaks in the human
population, we then characterize the critical threshold for a large outbreak, the distribution of outbreak sizes,
and associated scaling laws. These all show a strong dependence on the basic reproduction number in the animal
population and indicate the existence of a novel multicritical point with altered scaling behavior. The coupling
of animal and human infection dynamics has crucial implications, most importantly allowing for the possibility
of large human outbreaks even when human-to-human transmission is subcritical.
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I. INTRODUCTION

Coupled reaction processes taking place across spatial
domains or populations with complex structure can exhibit rich
dynamics and phase transitions. Reaction-diffusion models
have been used to study wave propagation and pattern
formation [1], and epidemic models have been useful in under-
standing the spread of infectious diseases, rumors, computer
viruses, and fads in populations [2]. In the context of stochastic
formulations, branching processes often form the basis of such
models. In describing epidemics, the susceptible-infected-
recovered (SIR) model has been extensively studied in fully
mixed populations [3] and more recently on complex networks
[4,5]. The SIR model of disease dynamics is an important
cornerstone of mathematical epidemiology where systematic
analysis has been possible through the use of branching
processes [3,6]. In the limit of large population, the SIR process
converges to a linear birth-death process—a special case
of continuous-time branching processes [7]. The linearized
process is amenable to analytical treatment that yields some
important results about the original nonlinear process, such as
the existence of a second-order phase transition at a critical
threshold. Below the threshold, all outbreaks are small [with
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size o(N ) as population size N → ∞], whereas above the
threshold some outbreaks can be large [with size O(N ) as
N → ∞]. At the critical point, the distribution of outbreak
sizes shows a power-law scaling of P (n) ∼ n−3/2 [where P (n)
is the probability of an outbreak of size n] with the average
outbreak size scaling as N1/3 [8].

Whereas the structure and statistics of epidemics in a single
population are extremely well characterized, the structure of
coupled epidemics in metapopulations have received much
less attention. An exceedingly important example of such
coupled outbreaks are zoonotic infections that spill over
from animal populations to humans representing a major
challenge in public health [9–11]. A zoonotic disease system
typically involves one or more animal species with humans as
the end hosts where cross-species transmission (spillover) is
facilitated by direct or vector-mediated interactions between
animals and humans. Although recent work has sought to
characterize and classify the salient features of zoonoses
[11–13], such classification schemes are largely descriptive,
and the basic phenomenology of cross-species infection has
not been addressed in sufficient mathematical detail. Models
that explicitly incorporate spillover dynamics are exceedingly
rare, despite the fact that such events are the defining
characteristic of zoonotic infection [11]. Among models that
do exist, stochastic treatments of spillover dynamics are much
less common than deterministic models, a fact echoed in a
recent survey [14].
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FIG. 1. (Color online) (a) Schematic of our zoonoses model.
The labeled arrows denote R0’s for inter- and intrapopulation
transmission. (b) Schematic depicting two possible mechanisms for
zoonotic outbreaks in human populations. Left: Infection spreads
efficiently in the animal population but inefficiently in humans, with
each introduction into humans leading to a stuttering chain that goes
extinct. Right: An initial spillover leads to a large outbreak sustained
by human-to-human transmission.

In a zoonotic system, it is important to investigate how
the nature of the critical threshold and the statistics of
human outbreaks, which are well known for the simple
SIR model, change with the addition of spillover dynamics.
We address this important question in this paper using a
simple two-species model of zoonoses (see Fig. 1). The
model at its core represents two SIR processes that are
coupled through cross-species transmission. The two host
populations, animal and human, are fully mixed within their
respective species, with a partial overlap between the species.
The partial overlap or the “mixing fraction,” ν, represents
the fraction of human hosts that are fully mixed with the
animal hosts and are thus at risk for direct infection from
animals. The three types of possible infection transmission
reactions are animal-to-animal, animal-to-human, and human-
to-human. This model describes zoonoses where the infection
prevalence in the animal population changes rapidly on time
scales of interest. This might occur with the introduction
of a disease into a new amplifier animal host population
[15,16] or with the evolutionary emergence of a new, more
virulent, strain of an existing animal pathogen [17,18]. Due
to the dynamical nature of spillover driven by the animal SIR
process, the degree of animal-to-animal transmission becomes
an important determinant of human outbreaks alongside the
degree of human-to-human transmission.

While the statistics of human outbreaks are crucial for
developing a systematic understanding, there are additional
questions that one may ask specific to a cross-species dis-
ease system. These include the probability of spillover, the
distribution of time to spillover (from the point when the
infection starts in the animal population), and the distribution
of infected animals at the moment of spillover. These questions
are relevant from the perspective of parameter estimation and
control interventions, as we address in this paper.

An outline of our methodology and results is as follows.
The coupled SIR process (Fig. 1) converges to a multitype
linear birth-death process in the limit of large system size
for fixed ratio of animal and human population size. The
limiting linear process allows us to use the same techniques
that have been employed to analyze the simple SIR in the limit
of large system size. The results presented here are divided into
two main parts. First, we calculate the joint distribution of a
subset of state variables as a function of time using probability
generating functions (PGF). We use the PGF to calculate the
probability of spillover, the distribution of first passage times,
and the distribution of infected animals at the time of spillover.
Second, we calculate the PGF for the distribution of outbreak
sizes in humans, which we then use to calculate the critical
threshold, the scaling laws for the distribution function at the
critical point, as well as finite-size scaling for the average
outbreak size. Last, we calculate the probability of a large
human outbreak.

The basic reproduction number R0 for an epidemic is
defined as the average number of new infections produced
by an infectious host in a fully susceptible population. In our
analysis we find that the critical threshold is a function of
the basic reproduction numbers in both animals and humans,
Raa

0 and Rhh
0 , and identify a parameter regime where large

outbreaks are possible in human populations—sustained by
repeated introductions from the animal population—even
if human-to-human transmission is subcritical (i.e., when
Rhh

0 < 1). Information only about infection in the human
population is insufficient to distinguish such a scenario
from one involving a single primary introduction followed
by extensive human-to-human transmission [see Fig. 1(b)].
Our systematic characterization of the spectrum of possible
behaviors helps to augment and clarify the previously proposed
classification frameworks [11–13]. We see our work as a
stepping stone toward more complex and realistic models
that might help address the spatial and ecological aspects of
zoonotic emergence, the evolution of virulence, and public
health interventions in the form of dynamic control strategies.

II. THE COUPLED SIR PROCESS

The three-type metapopulation model considered here
consists of animals, type 1 humans, and type 2 humans.
Figure 1 shows a schematic of the model and the reaction
equations are as follows:

(Sa,Ia, . . .)
βaaSaIa/Na−−−−−−→ (Sa−1,Ia+1, . . .)

(. . . ,Ia,Ra, . . .)
γaIa−−−−−−−→ (. . . ,Ia−1,Ra+1, . . .)

(. . . ,Sh1,Ih1p, . . .)
βahSh1Ia/Na−−−−−−→ (. . . ,Sh1−1,Ih1p+1, . . .)
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(. . . ,Sh1,Ih1s , . . .)
βhhSh1Ih/Nh−−−−−−→ (. . . ,Sh1−1,Ih1s +1, . . .)

(. . . ,Ih1p,Rh1p, . . .)
γhIh1p−−−−−−−→ (. . . ,Ih1p−1,Rh1p+1, . . .)

(. . . ,Ih1s ,Rh1s , . . .)
γhIh1s−−−−−−−→ (. . . ,Ih1s −1,Rh1s +1, . . .)

(. . . ,Sh2,Ih2, . . .)
βhhSh2Ih/Nh−−−−−−→ (. . . ,Sh2−1,Ih2+1, . . .)

(. . . ,Ih2,Rh2)
γhIh2−−−−−−−→ (. . . ,Ih2−1,Rh2+1). (1)

The full state vector is

(Sa,Ia,Ra,Sh1,Ih1p,Ih1s ,Rh1p,Rh1s ,Sh2,Ih2,Rh2),

but for brevity, only those state variables that change are shown
in each reaction above. There are Na animal hosts and Nh

human hosts in the system. A fraction ν of all human hosts
are of type 1 that can receive both primary transmission from
animals and secondary transmission from other humans. Type
2 human hosts, which are a fraction 1 − ν of the total human
population, can only receive a secondary transmission. Type 1
humans are fully mixed with both animals and type 2 humans.
(S�,I�,R�) denote the population in the susceptible, infectious,
and recovered compartments of each group such that S� +
I� + R� = N�. The subscripts (or superscripts) aa, ah, and
hh stand for the animal-animal, animal-human, and human-
human transmission reactions, respectively. βaa , βah, and βhh

are the rates of infectious contact per infectious host, and γa

and γh represent the rates of recovery. The subscripts “p” and
“s” (such as in Ih1p and Ih1s) distinguish between primary
and secondary infections, respectively. The total number of
infected human hosts is given by Ih = Ih1p + Ih1s + Ih2.

The basic reproduction numbers associated with the aa, ah,
and hh transmissions are as follows:

Raa
0 = βaa

γa

, Rhh
0 = βhh

γh

, Rah
0 = νβah

ργa

≡ β̂ah

γa

. (2)

Rij

0 represents the average number of new infections produced
by a single infected host of type i in a fully susceptible
population of type j . The animal epidemic follows the simple
SIR process with Raa

0 = 1 as the critical threshold. For
Raa

0 < 1, all animal outbreaks will be small. For Raa
0 > 1,

the probability of having a large outbreak [of size O(Na)] is
1 − 1/Raa

0 .

III. THE MULTITYPE LINEAR BIRTH-DEATH PROCESS

We investigate the model in the limit of Na,Nh →
∞,Na/Nh → ρ. In this limit, the epidemic does not saturate
and the depletion of susceptible pool in finite time can
be ignored. The original nonlinear process reduces to a
multitype linear birth-death process [19] with the following
rate equations:

(Ia, . . .)
βaaIa−−−−−−→ (Ia+1, . . .)

(. . . ,Ia,Ra, . . .)
γaIa−−−−−−→ (. . . ,Ia−1,Ra+1, . . .)

(. . . ,Ih1p, . . .)
νβahIa/ρ−−−−−→ (. . . ,Ih1p+1, . . .)

(. . . ,Ih1s , . . .)
νβhhIh−−−−−→ (. . . ,Ih1s +1, . . .)

(. . . ,Ih1p,Rh1p, . . .)
γhIh1p−−−−−→ (. . . ,Ih1p−1,Rh1p+1, . . .)

(. . . ,Ih1s ,Rh1s , . . .)
γhIh1s−−−−−→ (. . . ,Ih1s −1,Rh1s +1, . . .)

(. . . ,Ih2, . . .)
(1−ν)βhhIh−−−−−→ (. . . ,Ih2+1, . . .)

(. . . ,Ih2,Rh2)
γhIh2−−−−−→ (. . . ,Ih2−1,Rh2+1). (3)

The linear process can be represented by a smaller set of
equations if we ignore the type labeling. Before doing so,
we introduce a new set of state variables for the human
hosts that will be convenient in the forthcoming analysis. Let
Z�(t) = I�(t) + R�(t), where � stands for particular subscripts
used in what follows. Zh,p(t) denotes the number of primary
human infections and Zh,s(t) denotes the number of secondary
human infections irrespective of the human host type. The total
number of infected human hosts is then Zh(t) = Zh,p(t) +
Zh,s(t), regardless of type. The reduced set of equations
describing the multitype linear birth-death process are as
follows:

(Ia,Ra,Ih,Zh,p,Zh,s)
βaaIa−−→ (Ia+1,Ra,Ih,Zh,p,Zh,s)

(Ia,Ra,Ih,Zh,p,Zh,s)
γaIa−−→ (Ia−1,Ra+1,Ih,Zh,p,Zh,s)

(Ia,Ra,Ih,Zh,p,Zh,s)
β̂ahIa−−→ (Ia,Ra,Ih+1,Zh,p+1,Zh,s) (4)

(Ia,Ra,Ih,Zh,p,Zh,s)
βhhIh−−→ (Ia,Ra,Ih+1,Zh,p,Zh,s +1)

(Ia,Ra,Ih,Zh,p,Zh,s)
γhIh−−→ (Ia,Ra,Ih − 1,Zh,p,Zh,s),

where β̂ah ≡ νβah/ρ. The description of the process dynamics
can be expressed in the form of probability Pi,j,k,l,m(t) of
the state variables (Ia,Ra,Ih,Zh,p,Zh,s) being in the state
(i,j,k,l,m) at time t given that the process starts with a single
infectious animal host. Similarly, let Qn,p(t) be the probability
of the state variables (Ih,Zh,s) being in the state (n,p) at time
t starting from a single infectious human host at time 0. The
set of all possible transitions that involve a single infectious
animal host includes the following: production of another
infectious animal host, moving into recovery, or production
of an infectious human host. Let the probability of being in the
state (i,j,k,l,m) at time t from these one step transitions be

P a→aa
i,j,k,l,m(t), P a→∅

i,j,k,l,m(t) and P a→ah
i,j,k,l,m(t),

respectively. Similarly, for the transitions that begin with a
single infectious human host, let Qh→hh

n,p and Qh→∅
n,p be the

probability of reaching the (n,p) state based on infection
or recovery taking place at the first step. The probability
P a→∅

i,j,k,l,m(t) is 1 when i = k = 0 and 0 otherwise. Similarly,
Qh→∅

n,p is 1 when n = 0 and 0 otherwise. These probabilities
would satisfy the following Kolmogorov backward equation
[7]:

dPi,j,k,l,m

dt
= βaaP

a→aa
i,j,k,l,m + γaδi,0δk,0 + βahP

a→ah
i,j,k,l,m

− (βaa + γa + βah)Pi,j,k,l,m (5)

dQn,p

dt
= βhhQ

h→hh
n,p + γhδn,0 − (βhh + γh)Qn,p.

The set of backward equations (5) can be solved using proba-
bility generating functions (PGFs) [6,7]. Let Ga(x,y,u,z,w; t)

032702-3



SINGH, SCHNEIDER, AND MYERS PHYSICAL REVIEW E 89, 032702 (2014)

be the PGF for the joint distribution of the dynamic variables
when a single animal host was infected at time 0,

Ga(x,y,u,z,w; t) =
∑

i,j,k,l,m

Pi,j,k,l,m(t)xiyjukzlwm. (6)

Similarly, let Gh(u,w; t) be the PGF for the joint distribution
of (Ih(t),Zh,s(t)) where a single human host is infected at
time 0,

Gh(u,w; t) =
∑
n,p

Qn,p(t)unwp. (7)

The PGF for P a→aa
i,j,k,l,m(t) is simply G2

a , reflecting the indepen-
dence of branching process emanating from two individuals.
Similarly, the PGF for P a→ah

i,j,k,l,m(t) is GaGh and that for Qh→hh
n,p

is G2
h. Using the PGF representation we now write down the

following backward equation:

∂Ga

∂t
= βaaG

2
a + γay + β̂ahGaGhz − (βaa+β̂ah+γa)Ga

∂Gh

∂t
= βhhG

2
hw + γh − (βhh + γh)Gh. (8a)

The initial conditions for the PDEs are as follows:

Ga(x,y,u,z,w; 0) = x
(8b)

Gh(u,w; 0) = u,

which encode the information that there is a one infected
animal host at time 0. The equation for Gh can be solved
exactly. The solution is provided in Refs. [6,7] and we
reproduce it here as follows:

Gh(u,w; t)= Ah(Bh−u)+Bh(u−Ah)e−βhhw(Bh−Ah)t

(Bh−u)+(u−Ah)e−βhhw(Bh−Ah)t
, (9a)

where Ah(w) and Bh(w) are solutions of the following
quadratic equation such that 0 < Ah < 1 < Bh,

Rhh
0 ws2 − (

Rhh
0 + 1

)
s + 1 = 0. (9b)

The PGF Gh quantifies the distribution of a single chain of
infections that originates from a single primary infection. The
more interesting aspect of the zoonoses dynamics is captured
by the first equation (for Ga). A full analytical solution to
this process has recently been reported [20], but extracting
information specifically about the first spillover event into
humans—which is our primary focus here—is complicated
to derive from that general result. To address first passage
time phenomena more directly, we introduce a simpler subset
process below and derive its solution.

A. Analytical solution for a subset process

The distribution of (Ia,Ra,Zh,p) is governed by a reduced
set of reaction equations:

(Ia,Ra,Zh,p)
βaaIa−−→ (Ia + 1,Ra,Zh,p)

(Ia,Ra,Zh,p)
γaIa−−→ (Ia − 1,Ra + 1,Zh,p)

(Ia,Ra,Zh,p)
β̂ahIa−−→ (Ia,Ra,Zh,p + 1). (10)

Let Ga(x,y,z; t) represent the PGF for the distribution of
the above process. The PDE for the PGF is given by the

following:

∂Ga

∂t
= βaaG2

a + γay − (βaa+β̂ah + γa)Ga + β̂ahGaz, (11a)

with the initial condition

Ga(x,y,z; 0) = x. (11b)

Following the methods outlined in Ref. [6], we obtain the
following solution to the PDE:

Ga(x,y,z;t)= Aa(Ba−x)+Ba(x−Aa)e−βaa (Ba−Aa )t

(Ba−x) + (x−Aa)e−βaa (Ba−Aa )t
. (12a)

Aa(y,z) and Ba(y,z) are roots of the following quadratic
equation such that 0 < Aa < 1 < Ba:

Raa
0 s2 − (

Raa
0 +1+Rah

0 (1 − z)
)
s + y = 0. (12b)

The distribution reported here has been solved before in the
context of a human-only epidemic process with two types of
hosts [21]. In subsequent sections, we shall require the value
of roots at the point z = 0. Adopting notation from [22], we
define the following:

V0(y) = Aa(y,0) , v0 = Aa(1,0)
(12c)

V1(y) = Ba(y,0) , v1 = Ba(1,0).

B. First passage time and probability of spillover

We define the time to spillover as the first passage time T

for human infection, i.e., as the time when the first primary
infection occurs in the human hosts. The distribution of first
passage times is given by the following:

P [T � t] = P [Zh,p(t) > 0]

= 1 − Ga(1,1,0; t)

= 1 − v0(v1−1)+v1(1−v0)e−βaa (v1−v0)t

(v1 − 1) + (1 − v0)e−βaa (v1−v0)t
. (13)

This distribution is shown for various parameter values in
Fig. 2, along with results of discrete event simulation drawn
from the underlying set of reactions. Simulations were done
using Gillespie’s direct method [23] for reaction kinetics. It
can be seen from Fig. 2 that the distribution is defective since
the disease can go extinct in the animal population before
the primary transmission occurs in the human population.
The distribution can be used to calculated moments of the
first passage time conditioned on the occurrence of spillover
(see Appendix A for derivation):

E[T n |T < ∞] = n!

(βaa)n(v0−1)(v1−v0)n−1
Lin

(
v0−1

v1−1

)
,

(14)

where Lin is the polylogarithm function of order n. The mean
and the standard deviation of the first passage time are plotted
as a function of Raa

0 and Rah
0 in Fig. 3. The conditional nature

of the distribution leads to a nonmonotonic dependence on
Raa

0 . First passage times for Raa
0 < 1 are limited by the time

scale for the eventual extinction in the animal population:
spillover must occur quickly if it is going to happen at all. The
expected time to extinction in the animal population diverges
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FIG. 2. (Color online) First-passage time distribution for spill-
over into the human population P [T < t], comparing the analytical
calculation given by Eq. (13) (solid line) with the results of discrete
event simulation (using Gillespie’s direct method, for finite system
size Na = Nh = 103). The x axis is time normalized by the mean
infectious period (1/γa), of the animal species. The markers represent
the mean of 8000 simulation runs.

as Raa
0 → 1, leading to an increase in the mean first passage

time. The mean also decreases with increasing Rah
0 because of

the increasing rate of animal-to-human transmission.
The distribution of first passage times also gives us a way

to calculate the probability of spillover as

P [spill] = P [T < ∞] = 1 − v0. (15)

Using the law of total probability, the probability of spillover
can be decomposed as follows:

P [spill] = P [spill | small outbreak]P [small outbreak]

+P [spill | large outbreak]P [large outbreak], (16)

FIG. 3. (Color online) The mean time to spillover (in units of
the mean infectious period of animal hosts) as a function of Raa

0

and Rah
0 . Solid lines on the surface represent contours for the mean

values. Gradient in the shade represents the standard deviation of the
distribution (dark:high, light:low spanning the range [0.4,18.8] on a
log scale).
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FIG. 4. (Color online) Probability of spillover (blue, upper sur-
face) and the conditional probability of spillover given a small
outbreak in the animal population (gray, lower surface). The dashed
line marks the separation between the two surfaces at Raa

0 = 1. The
difference between the two surfaces gives the contribution of large
animal outbreaks to spillover risk.

where the conditioning is done on the state of the outbreak
in the animal population. For Raa

0 � 1, all animal outbreaks
are small. For Raa

0 > 1, the probability of a large animal
outbreak is nonzero. In the infinite size limit, it is implicitly
assumed that P [spill | large outbreak] = 1. Using this result
and P [large outbreak] = 1 − 1/Raa

0 in Eq. (16), we can
calculate P [spill | small outbreak] where Raa

0 > 1, as follows:

P [spill | small outbreak] =
{

1 − Raa
0 v0 if Raa

0 � 1,

1 − v0 if Raa
0 > 1.

(17)

The probability of spillover as a function of relevant model
parameters [Eq. (15)] is shown in Fig. 4 as the upper surface;
also shown is the probability of spillover given that there is a
small outbreak in the animal population [Eq. (17)]. We also
calculate finite-size corrections to the probability of spillover
in Appendix B. The results of the calculation are shown in
Fig. 5.

Stochastic models offer a stark contrast to deterministic
models that invariably associate spillover events with large
outbreaks in the animal population. While large outbreaks do
enhance the risk of spillover, small outbreaks also contribute
as can be seen from Fig. 4. This result indicates that some
spillovers may be almost impossible to trace back in the animal
population if they arise from a small outbreak where only a
few animal hosts were infected and no contact tracing data are
available.

C. Prevalence in the animal population at spillover

The distribution of infectious and recovered hosts in the
animal population at the first passage time can be calculated
by methods outlined in Ref. [22]. By interpreting the spillover
process as a linear birth-death-killing (BDK) process, the
distribution of infectious hosts at spillover is the same as
the distribution of killing positions in the BDK process—
geometrically distributed with parameter 1 − 1/v1, where v1

was defined in Eq. (12c). The calculation can be extended
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FIG. 5. (Color online) Finite-size corrections to the probability
of spillover. Dashed lines represent the analytical solution [Eq. (B3)]
for different values of Na . The solid line represents the solution from
the linear birth-death process [Eq. (15)]. Colored markers represents
values calculated from 10 000 simulation runs done using Gillespie’s
direct method. All results are for fixed Rah

0 = 10−3.

to include recovered hosts as well. The joint distribution of
infectious and recovered animal hosts at first passage time is
generated by the following PGF:

J (x,y) = xβ̂ah

1 − v0

∫ ∞

0

∂Ga(x,y,0; t)

∂x
dt

= xβ̂ah

βaa(1 − v0)(V1(y) − x)

= x(v1 − 1)

V1(y) − x
. (18)

The simplification in the last step of Eq. (18) comes from the
fact that v0 and v1 are roots of Eq. (12b), i.e.,

(v1 − 1)(1 − v0) = β̂ah

βaa

= Rah
0

Raa
0

. (19)

The mean number of infectious and recovered animal hosts at
the first passage time T are given by the following:

〈Ia(T )〉 = ∂J

∂x

∣∣∣∣
(1,1)

, 〈Ra(T )〉 = ∂J

∂y

∣∣∣∣
(1,1)

. (20)

A plot of the mean number of infectious animal hosts at first
passage time is shown as a function of Raa

0 and Rah
0 in Fig. 6.

We can sample analytically the distributions represented in
Eq. (18) and compare with the results of stochastic simulations
for finite system sizes, as is shown in Fig. 7. As seen in the
Fig. 7(a) for the expected number of infected animal hosts,
the tail of the analytical distribution overestimates the preva-
lence slightly because of epidemic saturation that occurs in
finite populations.

Given a prevalence of n infected animal hosts at spillover
(and no information about recovered hosts), the maximum
likelihood estimate for the parameters yields the equation
v1 = n/(n − 1). From Eqs. (12b) and (12c) we arrive at the

FIG. 6. (Color online) The expected number of infectious animal
hosts at the time of first primary human infection as a function of Raa

0

and Rah
0 . Solid lines on the surface represent contours for the mean

values. Gradient in the shade represents the standard deviation of the
distribution (dark:high, light:low spanning the range [10−2,103] on a
log scale).

following relationship between the model parameters:

R̄aa
0 = (n − 1)

(
R̄ah

0 + n−1
)
, (21)

where R̄aa
0 and R̄ah

0 are estimators for the corresponding
parameters.

While the first passage time reveals the time scale of
spillover, the disease prevalence reveals the state of the system
at spillover; the different dependence on transmission param-
eters for these two quantities, however, has interesting impli-
cations for parameter estimation and disease control (compare
Figs. 3 and 6). Our results indicate that the fluctuations in
the prevalence at spillover increase with Raa

0 , in contrast
to the first passage time which has the highest fluctuations
near Raa

0 = 1. In the absence of animal surveillance, the first
spillover into humans is usually the point at which the disease
is first detected and control interventions are initiated [18].
For Raa

0 substantially larger than 1, the spillover is likely to
happen relatively early, but the disease prevalence may be
quite large, making control difficult. In contrast, for Raa

0 close
to 1, the disease is likely to be detected late, but there will
be a low prevalence in the animal population at that time.
This is encouraging for public health interventions aimed at
controlling the disease in the animal population, although the
long delay before detection introduces greater uncertainties
as to whether other factors might need to be included in a
more complicated model (such as demographic changes in
the animal and human populations or evolution of pathogen
virulence).

IV. BRANCHING PROCESSES

In the limit of t → ∞, the SIR process is isomorphic to a
Galton-Watson branching process where the offspring are the
new infections produced by an infected host. The distribution
of outbreak sizes can be calculated by making the treelike
approximation for small outbreaks.
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FIG. 7. (Color online) The marginal distribution of the number of
infectious animal hosts (a) and the number of recovered animal hosts
(b) at first passage time T for finite system size (Na = Nh = 1000).
Solid lines represents the analytical solution obtained by sampling
from the PGF in Eq. (18). Colored markers represents values
calculated from 2 × 105 simulation runs done using Gillespie’s direct
method. All results are for fixed Rah

0 = 0.1.

A. Distribution of outbreak sizes

For the animal population, let Ha(z) be the PGF for the
distribution of outbreak sizes. From Eq. (12a), we obtain the
following:

Ha(z) = Ga(1,z,1; ∞) = Aa(z,1)

=
Raa

0 + 1 −
√(

Raa
0 + 1

)2 − 4Raa
0 z

2Raa
0

. (22)

Let Hh,p(x) be the PGF for the distribution of primary
infections in the human population. Then, from Eq. (12a), we
obtain the following:

Hh,p(x) = Ga(1,1,x; ∞) = Aa(1,x)

=
Raa

0 +1+Rah
0 (1−x)−

√(
Raa

0 +1+Rah
0 (1−x)

)2−4Raa
0

2Raa
0

.

(23)

FIG. 8. (Color online) The distribution of sizes of small human
outbreaks. (a) Colormap for the probability that an outbreak in
the human hosts is small spanning the range [0.36 (light), 1.0
(dark)]. Solid lines represent constant-probability contours in the
colormap. (b)–(d) Probability of having a small outbreak of size n at
different crossings of the threshold boundary. All results are for fixed
Rah

0 = 0.1.

Each primary infected host in the human population acts as
the progenitor for a branching process comprising of secondary
infections. Let Ĥh,s(x) be the PGF for the distribution of
secondary infections emanating from a primary progenitor.
Then, from Eq. (9a), we obtain the following:

Ĥh,s(z) = Gh(1,z; ∞) = Ah(z)

=
Rhh

0 + 1 −
√(

Rhh
0 + 1

)2 − 4Rhh
0 z

2Rhh
0 z

. (24)

The PGF for the joint distribution of primary and secondary
infections can be written as follows:

Hh(x,z) = Hh,p(xĤh,s(z)). (25)

The PGF for the total number (irrespective of whether the
infection was primary or secondary) is given by the following:

Hh(z) = Hh,p(zHh,s(z)). (26)

The probability of an outbreak being small is simply Hh(1).
This probability is shown as a function of Raa

0 and Rhh
0 , for

fixed Rah
0 , in Fig. 8(a). Last, the PGF for secondary infections

is given by the following:

Hh,s(z) = Hh(1,z). (27)

Following Ref. [24], we can extract the probability of n human
hosts getting infected using the Cauchy integral formula,

P [Zh(∞) = n] = 1

2πi

∮
Hh(z)

zn+1
dz, (28)
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where the integral is done over the unit circle |z| = 1 in the
complex plane. Similarly, the joint probability distribution
can be extracted by extending the Cauchy integral formula
to higher dimensions,

P [Zh,p(∞) = m,Zh,s(∞)=n]

= 1

(2πi)2

∮ ∮
Hh(x,z)

xm+1zn+1
dx dz, (29)

where the integrals are over two unit circles in the x and z

complex planes.

B. Critical threshold

The critical threshold is defined as the point in parameter
space where the average outbreak size diverges [4,5] and the
probability of a large outbreak becomes greater than 0. We
introduce the following notation for the average outbreak sizes.

〈n〉a ≡ E[Ra(∞)]
(30)

〈n〉h ≡ E[Rh(∞)].

For the animal population,

〈n〉a = H ′
a(1)

= 1

1 − Raa
0

, (31)

which yields the condition Raa
0 = 1 as the critical threshold.

For the human population,

〈n〉h = H ′
h(1)

= H ′
h,p(1){1 + H ′

h,s(1)}

= Rah
0(

1 − Raa
0

)(
1 − Rhh

0

) . (32)

From the above expression, the critical threshold for the
human population is given by max(Raa

0 ,Rhh
0 ) = 1. Thus,

large outbreaks in the human population are possible even
if Rhh

0 < 1, emphasizing the potential importance of spillover-
driven large outbreaks.

C. Asymptotic scaling near the critical threshold

The scaling of the outbreak sizes near the threshold
boundary can be investigated through the singularity analysis
of the associated generated function (see Appendix C for
details). The threshold boundary can be divided into three
parts: (1) Raa

0 = 1,Rhh
0 < 1; (2) Raa

0 < 1,Rhh
0 = 1; and (3)

Raa
0 = 1,Rhh

0 = 1. (Subscripts 1, 2, and 3 below refer to these
three parts of the boundary, respectively.) Along the two lines
of the threshold boundary excluding the multicritical point, the
distribution of outbreak sizes scale as follows:

Pi(n) ∼ ζ−n
i n−3/2, i = 1,2, (33)

whereas near the multicritical point the distribution scales as
follows:

P3(n) ∼ ζ−n
3 n−5/4. (34)

The variables ζi are a function of the distance from
the threshold boundary. The ζ ’s are defined in terms of

�a = 1 − Raa
0 and �h = 1 − Rhh

0 ,

ζ1 = 1 + �h�
2
a

4Rah
0

+ O
(
�h�

3
a

)

ζ2 = 1 + �2
h

4
(35)

ζ3 = 1 + �2
h

4
, where �h = �2

a

2Rah
0

+ O
(
�3

a

)
.

The scaling laws with exponential cutoffs are shown in Fig. 8
along different crossings of the threshold boundary. Note that
ζ3 is a valid exponential cutoff only on a parabolic curve
near the multicritical point. The problem of estimating the
corrections away from this curve is nontrivial and rigorous
results are still an open problem. But intuitively we know that
in this case, the generating function will have two singularities
which are coalescing at the multicritical point. In such a
scenario, there will be a crossover regime where the power-law
exponent switches from 3/2 to 5/4 depending on the distance
from the threshold boundary.

The appearance of a different scaling exponent at the mul-
ticritical point points to a different universality class emerging
from the simultaneous divergence of two individual SIR
processes in our system. We note that the same n−5/4 scaling—
arising from one critical process driving another—has been
reported recently in a different, albeit related, multitype
critical branching process intended to model multistage SIR
infections [25].

D. Finite-size scaling at critical threshold

Using the heuristic arguments presented in Ref. [25], we
can calculate how the average outbreak size scales with system
size at the threshold boundary max(Raa

0 ,Rhh
0 ) = 1. Let Ma be

the “maximal” size of an outbreak in the animal population,
when Raa

0 = 1, such that an outbreak cannot exceed this size
due to depletion of susceptible hosts [25]. The effective Raa

0
for a finite-size system reduces to the following:

R̂aa
0 = 1 − Ma/Na. (36)

Using Eq. (31), we obtain the following estimate for the scale
of the average outbreak size:

〈n〉a ∼ Na/Ma. (37)

From the 3/2 scaling law for single-type SIR [25], we obtain
a second estimate for the average outbreak size,

〈n〉a =
Ma∑
n=1

nn−3/2 ∼
√

Ma. (38)

Equating the two estimates and imposing self-consistency, one
obtains the following scaling laws (see Ref. [25]):

Ma ∼ N2/3
a , 〈n〉a ∼ N1/3

a . (39)

One can also calculate the scaling window that represents the
distance from the threshold boundary within which the scaling
law will hold [8]. For the animal SIR, the scaling window is
given by the following:∣∣1 − Raa

0

∣∣ ∼ N−1/3
a . (40)
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FIG. 9. (Color online) Finite-size scaling at the threshold bound-
ary Raa

0 = 1,Rhh
0 < 1. The plot shows the scaling law for average

outbreak size in humans 〈n〉h ∼ N 1/3
a and crossover to N

1/2
h when

Nh ∼ N 2/3
a on a log-log plot. The points are the average of 7 × 104

stochastic realizations. The dashed line has slope 1/3. Inset: The
average outbreak size 〈n〉h plotted against Nh on a log-log scale
for fixed Na = 107. The dashed line has slope of 1/2. The points
are the average over 105 stochastic realizations. All results for
Raa

0 = 1,Rah
0 = 0.5,Rhh

0 = 0.1.

The calculation for human outbreaks is separated into three
cases [as highlighted in Figs. 8(b), 8(c), and 8(d)]. For
Raa

0 = 1, Rhh
0 < 1, the average outbreak size is given by

substituting R̂aa
0 in Eq. (32) as follows:

〈n〉h ∼ Na/Ma = N1/3
a . (41)

The second estimate is obtained by using the scaling law of
3/2 derived in Eq. (C8b),

〈n〉h =
Mh∑
n=1

n−1/2 ∼
√

Mh. (42)

Equating the two estimates reveals Mh ∼ N
2/3
a . If O(Na) 


O(N3/2
h ), the scaling relation leads to the maximal outbreak

exceeding the system size, which is physically inconsistent.
Thus, the maximal outbreak scale needs to be capped at
Nh, i.e.,

Mh ∼ min
(
N2/3

a ,Nh

)
. (43a)

From (43a), we can estimate that the crossover regime between
the two scales in the min function is given by Nh ∼ N

2/3
a . The

scaling of average outbreak size is given by
√

Mh, i.e.,

〈n〉h ∼ min
(
N1/3

a ,N
1/2
h

)
. (43b)

The analytical result of Eq. (43b) is validated in Fig. 9. The
scaling window near the boundary Raa

0 = 1,Rhh
0 < 1 is given

by the following:∣∣1 − Raa
0

∣∣ ∼ max
(
N−1/3

a ,N
−1/2
h

)
. (44)

The case of Raa
0 < 1,Rhh

0 = 1 results in the same calcula-
tions as for a single-type SIR. Thus, the scaling laws are the

same as in Eq. (39),

Mh ∼ N
2/3
h , 〈n〉h ∼ N

1/3
h . (45)

with the scaling window same as that for the simple SIR,∣∣1 − Rhh
0

∣∣ ∼ N
−1/3
h . (46)

At the multicritical point, the effective basic reproduction
numbers are as follows:

R̂aa
0 = 1 − Ma/Na, R̂hh

0 = 1 − Mh/Nh.

From (32), we arrive at the first estimate,

〈n〉h ∼ Na

Ma

Nh

Mh

= N
1/3
a Nh

Mh

. (47)

The second estimate is derived from Eq. (C14a) as follows:

〈n〉h =
Mh∑
n=1

n−1/4 ∼ M
3/4
h . (48)

Equating the two estimates provides the scaling for the
maximal outbreak size,

Mh ∼ (
N1/3

a Nh

)4/7
. (49)

Since the maximal outbreak size cannot exceed the system
size, the following holds true:

Mh ∼ min
(
Nh,

(
N1/3

a Nh

)4/7)
. (50a)

The scale of the average outbreak size is given by the following:

〈n〉h ∼ min
(
N

3/4
h ,

(
NaN

3
h

)1/7)
. (50b)

The crossover region in the multicritical case is Nh ∼ N
4/9
a .

The scaling window in this case would depend on both Raa
0

and Rhh
0 , i.e.,∣∣(1 − Raa

0

)(
1 − Rhh

0

)∣∣ ∼ max
(
N

−3/4
h ,

(
NaN

3
h

)−1/7)
. (51)

The finite-size scaling laws have important implications
for determining whether a critical outbreak is spillover driven
or intrinsically driven. Note that while the two lines of the
threshold boundary have the same scaling in the distribution
of outbreak sizes, the average outbreak size scales differently
along those lines. Whereas an intrinsically driven critical
outbreak (Raa

0 < 1,Rhh
0 = 1) scales only with the abundance

of the human host population, a spillover driven critical
outbreak (Raa

0 = 1,Rhh
0 < 1) can depend on the abundance

of the animal population. In addition, for Nh � N
2/3
a , a

spillover-driven outbreak has a greater extent of O(N1/2
h ) as

compared to an intrinsically driven outbreak (simple SIR)
which is capped at O(N1/3

h ).

E. Probability of large outbreak

For the animal population, the probability of large outbreak
is calculated as follows:

P [Ra(∞) = ∞] = 1 − Ha(1) = 1 − 1

Raa
0

. (52)
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FIG. 10. Probability of a large outbreak in humans for increasing
values of Rah

0 = [0.05,0.4,1.0]. The upper surface is partitioned into
four sections: (A) where all outbreaks are small, (B) where spillover-
driven large outbreaks are possible, (C) where large outbreaks can
only be sustained by human-to-human transmission, and (D) where
sustained spillover and human-to-human transmission result in a large
outbreak.

Similarly, the probability of a large human outbreak is
calculated as follows. Assuming Rah

0 > 0,

P [Rh(∞) = ∞] = 1 − Hh(1)

= 1 − Hh,p(1,Hh,s(1))

=

⎧⎪⎨
⎪⎩

0 if Rhh
0 � 1 and Raa

0 � 1,
1 − 1

Raa
0

if Rhh
0 � 1 and Raa

0 > 1,

1 − Aa

(
1, 1

Rhh
0

)
if Rhh

0 > 1.

(53)

The probability is shown as a surface plot in Fig. 10.
If Rhh

0 � 1, an outbreak in the human population can be
large if and only if the outbreak in the animal population is
large. In such a case, the probability of a large human outbreak
is equal to the probability of a large outbreak in the animal
population, which is a function of only Raa

0 (see Fig. 12). On
the other hand, if Rhh

0 > 1, a large human outbreak can occur
even if the animal outbreak is small. Figures 11 and 12 compare
the analytical results with results from stochastic simulation.
Away from the phase transitions at Raa

0 = 1 and Rhh
0 = 1, the

results from stochastic simulations show good agreement with
the theory. Near the phase transition, the simulation results
should converge to the theory for increasing N . Since the
definition of a large outbreak becomes precise only in the limit
of large system size, there are no finite-size corrections that
can be derived in this case.

V. DISCUSSION

We have analyzed a stochastic model of coupled infection
dynamics in an animal-human metapopulation using the theory
of multitype branching processes. Our results follow from
well-established theory [6,7,21,22,25] that we applied to the
problem of zoonoses. We have described spillover from animal
to human populations, but such a model—or a variant of it,
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FIG. 11. (Color online) The probability of a large human out-
break for finite populations (Na = Nh = 103). The criteria for a large
outbreak was chosen as 100 or more infected human hosts. The points
represent the result of 10 000 stochastic simulations. The solid lines
represent the analytical solution from Eq. (53). The simulations do not
agree with the analytical solution near the phase transition because
of the chosen criteria for large outbreaks and finite-size effects. All
results are for fixed Rah

0 = 1.

perhaps with a different form of interspecies coupling—would
be applicable to other cross-species infections, such as among
different animal hosts. The coupling of animal and human
infectious disease dynamics results in important changes to
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FIG. 12. (Color online) The probability of a large human out-
break for Rhh

0 = 0.8 and varying Nh. The criteria for a large
outbreak was chosen as the number of infected hosts being greater
than 1% of the total population. The points represent the result
of 10 000 stochastic simulations. The solid line is the analytical
solution max(0,1 − 1/Raa

0 ). Inset: The absolute difference between
the analytical solution and finite-size results. All results are for fixed
Rah

0 = 0.1.

032702-10



USING MULTITYPE BRANCHING PROCESSES TO . . . PHYSICAL REVIEW E 89, 032702 (2014)

the structure of outbreaks in human populations as compared
to those in a human-only SIR model.

The statistical quantities that we have calculated in this
work provide important insights into spillover and zoonoses.
For instance, the probability of spillover (Sec. III B) is
strictly less than 1 because the outbreak can die out in
the animal population before any primary human infections
occur. The distribution of first passage times is useful for
understanding the relevant timescales of spillover and their
stochastic fluctuations. This serves two important purposes:
first, it indicates whether demography should be factored
into the model (i.e., whether spillover will take place on a
time scale fast compared to demographic changes) and, more
crucially, it suggests strategies for optimal surveillance in
the field to pinpoint the relevant time scales and surveillance
frequencies needed to identify emerging zoonotic infections.
Last, the distribution of disease prevalence in the animal
population at the moment of spillover (Sec. III C) highlights
the intrinsic challenges to parameter estimation in order to
build predictive models of cross-species spillover based on
prevalence information.

The critical threshold and statistics of human outbreaks
allow us to do a comparative analysis between the simple SIR
and the coupled SIR presented in this work. Unlike the simple
SIR, in our multispecies model the expected outbreak size
diverges if eitherRaa

0 orRhh
0 exceeds 1 (Sec. IV B). Thus, large

outbreaks in the human population are possible even if Rhh
0 <

1, emphasizing the potential importance of spillover-driven
large outbreaks. This could have important ramifications for
zoonotic diseases where human-to-human transmission is
not the crucial determinant of the epidemic outcome such
as rabies, Nipah virus, Hendra virus, and Menangle virus
[13,18]. At the multicritical threshold, the outbreak sizes for
the epidemics in the animal and human populations diverge
simultaneously, resulting in a new universality class with
a different scaling behavior. The animal-human coupling
enhances the probability of longer chains [P (n) ∼ n−5/4 as
compared to P (n) ∼ n−3/2], which could allow for greater
opportunity for pathogen adaptation to human hosts [11,26].
Furthermore, depending on where the system is in parameter
space, the scaling of the average outbreak in the human
population sizes can vary significantly [Eqs. (43b) and (45)].

Our analysis suggests the need to be precise with terminol-
ogy arising in the study of cross-species outbreaks. Various
classification schemes previously proposed have delineated
among different zoonotic infections based on how infectious
they are in the human population, e.g., stages II, III, and IV
discussed in Refs. [11,12]. But we have shown that zoonotic
infections in all three stages can support large outbreaks in
the human population if driven sufficiently hard by an animal
outbreak. In addition, the term “stuttering chain” has been
used in the literature [11,26] to describe a chain of infections
starting from a single infectious host that goes extinct without
affecting a significant fraction of the host population. For the
single-type SIR model, the term is synonymous with “small
outbreak” as we have defined here, and the epidemic threshold
is the point in parameter space at which the average length
of one such chain diverges. But in our multitype SIR model,
the term “stuttering chain” cannot be used interchangeably
with “small outbreak.” Since multiple introductions can occur

in the human population, an outbreak is small if and only if
(1) a finite number of distinct infection chains occur in the
human population and (2) all such chains stutter to extinction.
A large outbreak in the human hosts occurs when any one
of these conditions is violated. Specifically, a spillover-driven
large outbreak occurs when the number of infection chains
diverges, which can happen if Raa

0 > 1. Separately, the length
of any one such chain can diverge if Rhh

0 > 1.
The community has advocated “model-guided fieldwork”

[11,27,28], as well as increased collaboration between public
health scientists and ecologists in developing integrated
approaches to predicting and preventing zoonotic epidemics
[18]. Mathematical analysis needs to play a central role in
such activities, in order to assess the implications of model
assumptions. In this paper, we have endeavored to system-
atically characterize the behavior of a simple model system
as a function of model parameters, and various extensions
of this work are possible. Within the model itself, one could
relax the assumption of homogeneous, full mixing within each
population in order to investigate the role of heterogeneous
mixing on complex contact networks [4,5,29]. Alternatively,
one could develop models of processes outside of the scope
of the current model, to address factors such as the ecology
of interactions between wildlife and domesticated animals,
the encroachment of human development into animal habitats,
the evolution of virulence, the propensity for pathogens to
successfully jump across species, and the efficacy of various
control strategies. We envision the parameters of our cross-
species infection model to be the interface to that broader class
of models, which would specify how cross-species infection
parameters change over time as a function of ecological,
evolutionary, and immunological factors. In the current work,
we have sought to identify key aspects of phenomenology,
highlight the role of important processes, and suggest further
inquiry into particular systems of interest in order to help frame
more complex and comprehensive descriptions of zoonotic
infection.
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APPENDIX A: MOMENTS OF FIRST PASSAGE TIME

Here we report the calculation of moments for the first
passage time distribution,

E[T n |T <∞] = E[T n1{T <∞}]
P [T < ∞]

= n
∫ ∞

0 tn−1 P [ t < T < ∞] dt

P [T < ∞]

= n(v1−v0)
∫ ∞

0

tn−1e−βaa (v1−v0)t

(v1−1)+(1−v0)e−βaa (v1−v0)t
dt,
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where 1{T <∞} is the indicator function that takes the value 1 for
T < ∞. Letting c = v1 − 1,d = 1 − v0, and k = βaa(v1 − v0),
we can rewrite this as follows:

E[T n |T < ∞] = nk

βaa

∫ ∞

0

tn−1e−kt

c + de−kt
dt

= −n!

βaakn−1d
Lin

(−d

c

)

= n!

(βaa)n(v0−1)(v1−v0)n−1
Lin

(
v0−1

v1−1

)
,

(A1)

where Lin(z) is the polylogarithm function of order n. The
conditional expected value of the first passage time is obtained
by setting n = 1 in this expression,

E[T |T < ∞] = 1

βaa(1 − v0)
log

(
v1−v0

v1−1

)
. (A2)

Our result is for all moments of the distribution; to our
knowledge, only the first moment has been reported earlier in
Ref. [22] (in the context of a problem in population genetics).

APPENDIX B: FINITE-SIZE CORRECTIONS
TO PROBABILITY OF SPILLOVER

The probability of spillover, as calculated in Eq. (15), is
valid only in the limit of Na,Nh → ∞. Deviations from this
result are expected for finite system sizes, which we report
here. We make the assumption that the linear birth-death
process provides accurate statistics of small outbreaks in
finite-size systems. This is a valid assumption since small
outbreaks are o(N ) and, thus, their distribution is independent
of the total system size provided N 
 1. Using, Eq. (17), the
assumption is stated mathematically as follows:

P N [spill|small outbreak] =
{

1 − Raa
0 v0 if Raa

0 � 1,

1 − v0 if Raa
0 > 1.

(B1a)

P N [small outbreak] = 1

Raa
0

. (B1b)

Now we calculate the finite-size equivalent of
P [spill | large outbreak] using the hazard function. For
this calculation, we ignore the fluctuations around the mean
and assume that the animal epidemic obeys the deterministic
SIR. Before the first primary infection, the entire human
population is susceptible and thus Sh,1(t) = νNh.

P N [spill | large outbreak] = 1 − exp

{
−

∫ ∞

0

βahSh,1Ia

Na

dt

}

= 1 − exp
{ − NaRah

0 fa

}
, (B2a)

where

fa = lim
Na→∞

E[Ra(∞)]

Na

(B2b)

is obtained by solving the final size equation for a simple SIR,

1 − fa = e−Raa
0 fa . (B2c)

From Eq. (B2a), P N [spill | large outbreak] → 1 as Na → ∞
in agreement with the large system size limit. Using the law of

total probability, we now arrive at the probability of spillover
with finite-size corrections.

P N
[
spill;Raa

0 � 1
] = 1 − v0

P N
[
spill;Raa

0 > 1
]=1−v0−

(
1− 1

Raa
0

)
exp

{−NaRah
0 fa

}
.

(B3)

Figure 5 shows the comparison of finite-size corrections as
calculated using Eq. (B3) with stochastic simulations.

In the limit of vanishingly small Rah
0 , it is important to

consider the limit of Rah
0 Na as Na → ∞. Let ξ = Rah

0 Na .
The probability of spillover presented in Fig. 4 assumes the
limit of ξ → ∞. For finite sizes, the probability of spillover
simplifies to

lim
Rah

0 → 0
Na → ∞

P N
[
spill;Raa

0 � 1
] = 0

lim
Rah

0 → 0
Na → ∞

P N
[
spill;Raa

0 > 1
]

=
(

1 − 1

Raa
0

)
[1 − exp{−ξfa}]. (B4)

Thus, depending on the value of ξ , the limiting value for the
probability of spillover when Raa

0 > 1 can assume any value
in the range [0,1 − 1/Raa

0 ]. Thus, if Raa
0 
 1 and Rah

0 � 1,
then the probability of spillover is indeterminate if there is no
information about the scale of Rah

0 Na .

APPENDIX C: ASYMPTOTIC SCALING
NEAR THE CRITICAL THRESHOLD

The scaling of the outbreak sizes near the critical threshold
can be investigated through the singularity analysis of the asso-
ciated generated function H (z) [30]. The dominant singularity
ζ of the PGF determines the asymptotic form for P (n) which
is the probability of having an outbreak of size n. If a given
PGF can be expanded around the singularity such that

H (z) ∼
(

1 − z

ζ

)α

, (C1)

then

P (n) ∼ ζ−nn−α−1

�(−α)
, n → ∞, (C2)

where α /∈ Z>0. The asymptotic form for P (n) can be derived
by substituting Eq. (C1) in the Cauchy integral formula
[Eq. (28)] and making the following substitution:

z �→ ζ

(
1 + t

n

)
. (C3)

Thus, the singularity determines the exponential factor and
the asymptotic form of the generating function determines
the power-law exponent. By rescaling the function H (z) →
H (zζ ), the calculation of the power-law exponent is simplified
since the singularity is now located at z = 1. We now apply
this analysis to the generating function Hh(z).

Let �a = 1 − Raa
0 and �h = 1 − Rhh

0 be the distances
from the critical thresholds. We first calculate the scaling near

032702-12
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the threshold Raa
0 = 1, i.e., |�a| < |�h| and |�a| � 1. We

assume that the parameters are such that the singularities of
the generating function Hh(z) are far apart. The dominant
singularity near the chosen threshold is given by

ζ1 =
(

1 +
(√

Raa
0 − 1

)2

Rah
0

)(
1 − Rhh

0

(√
Raa

0 − 1
)2

Rah
0

)

= 1 + �h

(
�2

a

4Rah
0

+ O
(
�3

a

))
. (C4)

The singularity ζ1 determines the exponential prefactor. To
obtain the power-law scaling, the generating function can be
analyzed at the critical point (Raa

0 = 1 in this case) without
loss of generality. At the critical point ζ1 = 1 and the PGF
Hh,p(x) simplifies as follows:

Hh,p(z) =
2 +Rah

0 (1 − z) −
√
Rah

0 (1 − z)
(
4 +Rah

0 (1 − z)
)

2
.

(C5)

For further simplification, let zĤh,s(z) be denoted by H̃h,s(z).
Making the substitution (C3) and performing a series expan-
sion in fractional powers of (−t/n) gives

H̃h,s(1 + t/n) ∼ 1 + t

�hn
. (C6)

Using (26), we obtain

Hh(1 + t/n) ∼ 1 + Rah
0

2�h

(−t

n

)
−

√
Rah

0

�h

(−t

n

)1/2

− 1

8

(Rah
0

�h

)3/2(−t

n

)3/2

. (C7)

By using the Cauchy integral formula on the asymptotic
expansion of Hh(z), we obtain the asymptotic probability P1(n)

P1(n) ∼ n−3/2, ζ1 = 1 (C8a)

at the threshold boundary Raa
0 = 1,Rhh

0 �= 1. Using the ex-
ponential prefactor obtained in Eq. (C4) we arrive at the
asymptotic scaling for large n near Raa

0 = 1,

P1(n) ∼ ζ−n
1 n−3/2. (C8b)

This scaling of outbreak sizes near Raa
0 = 1 is shown in

Fig. 8(b). Note that the scaling can be guessed by looking
at the leading term in the expansion, which in Eq. (C7) is
(−t/n)1/2. Similarly, performing the same steps of analysis

near the critical point of Rhh
0 = 1, we obtain

P2(n) ∼ ζ−n
2 n−3/2, (C9)

where

ζ2 = 1 + �2
h

4
. (C10)

This scaling of outbreak sizes near Rhh
0 = 1 is shown in

Fig. 8(d). Near the multicritical point Raa
0 = Rhh

0 = 1, the
function has a unique singularity if the value of the function
H̃h,s(z) at its singularity ζ2 coincides with the singularity of
the function Hh,p(z), i.e.,

1 +
(√

Raa
0 − 1

)2

Rah
0

= Rhh
0 + 1

2Rhh
0

, (C11)

which simplifies to

�h = �2
a

2Rah
0

+ O
(
�3

a

)
(C12)

for �a,�h � 1. The unique singularity is given by ζ2. Thus,
the correction to the pure power law would be ζ−n

2 but only on
the curve given by Eq. (C12). Next, we extract the power-law
scaling at the threshold. For Raa

0 = Rhh
0 = 1,

H̃h,s(z) = 1 − √
1 − z

Hh,p(z) =
2 +Rah

0 (1 − z) −
√
Rah

0 (1 − z)
(
4 +Rah

0 (1 − z)
)

2
,

(C13)

whose functional composition yields

Hh(z) = Hh,p(H̃h,s(z))

Hh(z) =
2 + Rah

0

√
1 − z −

√
Rah

0

√
1 − z

(
4 + Rah

0

√
1 − z

)
2

.

Substituting (C3) and performing a series expansion in frac-
tional powers (−t/n), we obtain the (−t/n)1/4 as the leading
term. Using the Cauchy integral formula, the asymptotic
scaling is given by

P3(n) ∼ n−5/4, ζ3 = 1. (C14a)

Away from the multicritical threshold but staying on the curve
(C12), the asymptotic form is

P3(n) ∼ ζ−n
3 n−5/4, (C14b)

where ζ3 = ζ2 as defined in Eq. (C10). This scaling of outbreak
sizes at the multicritical point Raa

0 = 1,Rhh
0 = 1 is shown in

Fig. 8(c).
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