BioHPC Cloud Software
There are 1175 software titles installed in BioHPC Cloud. The sofware is available on all machines (unless stated otherwise in notes), complete list of programs is below, please click on a title to see details and instructions. Tabular list of software is available here
Please read details and instructions before running any program, it may contain important information on how to properly use the software in BioHPC Cloud.
3D Slicer, 3d-dna, 454 gsAssembler or gsMapper, a5, ABRicate, ABruijn, ABySS, AdapterRemoval, adephylo, Admixtools, Admixture, AF_unmasked, AFProfile, AGAT, agrep, albacore, Alder, AliTV-Perl interface, AlleleSeq, ALLMAPS, ALLPATHS-LG, Alphafold, alphapickle, Alphapulldown, AlphScore, AMOS, AMPHORA, amplicon.py, AMRFinder, analysis, ANGSD, AnnotaPipeline, Annovar, ant, antiSMASH, anvio, apollo, arcs, ARGweaver, aria2, ariba, Arlequin, ART, ASEQ, aspera, assembly-stats, ASTRAL, atac-seq-pipeline, ataqv, athena_meta, ATLAS, Atlas-Link, ATLAS_GapFill, atom, ATSAS, Augustus, AWS command line interface, AWS v2 Command Line Interface, axe, axel, BA3, BactSNP, bakta, bamsnap, bamsurgeon, bamtools, bamUtil, barcode_splitter, BarNone, Basset, BayeScan, Bayescenv, bayesR, baypass, bazel, BBMap/BBTools, BCFtools, BCL convert, bcl2fastq, BCP, bdbag, Beagle, Beast2, bed2diffs, bedops, BEDtools, bettercallsal, bfc, bgc, bgen, bicycle, BiG-SCAPE, bigQF, bigtools, bigWig, bioawk, biobakery, biobambam, Bioconductor, biom-format, BioPerl, BioPython, Birdsuite, Bismark, Blackbird, blasr, BLAST, BLAST_to_BED, blast2go, BLAT, BlobToolKit, BLUPF90, BMGE, bmtagger, bonito, Boost, Bowtie, Bowtie2, BPGA, Bracken, BRAKER, BRAT-NextGen, BRBseqTools, BreedingSchemeLanguage, breseq, brocc, bsmap, BSseeker2, btyper3, BUSCO, BUSCO Phylogenomics, BWA, bwa-mem2, bwa-meth, bwtool, cactus, CAFE, CAFE5, caffe, cagee, canu, Canvas, CAP3, caper, CarveMe, catch, cBar, CBSU RNAseq, CCMetagen, CCTpack, cd-hit, cdbfasta, cdo, CEGMA, CellRanger, cellranger-arc, cellranger-atac, cellranger-dna, centrifuge, centroFlye, CFM-ID, CFSAN SNP pipeline, CheckM, CheckM2, chimera, ChimeraTE, chimerax, chip-seq-pipeline, chromosomer, Circlator, Circos, Circuitscape, CITE-seq-Count, ClermonTyping, clues, CLUMPP, clust, Clustal Omega, CLUSTALW, Cluster, cmake, CMSeq, CNVnator, coinfinder, colabfold, CombFold, Comparative-Annotation-Toolkit, compat, CONCOCT, Conda, Cooler, copyNumberDiff, cortex_var, CoverM, crabs, CRISPRCasFinder, CRISPResso, crispron, Cromwell, CrossMap, CRT, cuda, Cufflinks, curatedMetagenomicDataTerminal, cutadapt, cuteSV, Cytoscape, dadi, dadi-1.6.3_modif, dadi-cli, danpos, DAS_Tool, dashing, DBSCAN-SWA, dDocent, DeconSeq, Deepbinner, deeplasmid, DeepTE, deepTools, Deepvariant, defusion, delly, DESMAN, destruct, DETONATE, dfast, diamond, dipcall, diploSHIC, discoal, Discovar, Discovar de novo, distruct, DiTASiC, DIYABC, dnmtools, Docker, dorado, DRAM, dREG, dREG.HD, drep, Drop-seq, dropEst, dropSeqPipe, dsk, dssat, Dsuite, dTOX, duphold, DWGSIM, dynare, ea-utils, ecCodes, ecopcr, ecoPrimers, ectyper, EDGE, edirect, EDTA, eems, EgaCryptor, EGAD, eggnog-mapper, EIGENSOFT, elai, ElMaven, EMBLmyGFF3, EMBOSS, EMIRGE, Empress, enfuse, EnTAP, entropy, epa-ng, ephem, epic2, ermineJ, ete3, EukDetect, EukRep, EVE, EVM, exabayes, exonerate, ExpansionHunterDenovo-v0.8.0, eXpress, FALCON, FALCON_unzip, Fast-GBS, fasta, FastAAI, FastANI, fastcluster, fastGEAR, FastME, FastML, fastp, FastQ Screen, fastq-multx-1.4.3, fastq_demux, fastq_pair, fastq_species_detector, FastQC, fastqsplitter, fastsimcoal2, fastspar, fastStructure, FastTree, FASTX, fcs, feems, feh, FFmpeg, fgbio, figaro, Filtlong, fineRADstructure, fineSTRUCTURE, FIt-SNE, flash, flash2, flexbar, Flexible Adapter Remover, Flye, FMAP, FragGeneScan, FragGeneScan, FRANz, freebayes, FSA, funannotate, FunGene Pipeline, FunOMIC, G-PhoCS, GADMA, GAEMR, Galaxy, Galaxy in Docker, GATK, gatk4, gatk4amplicon.py, gblastn, Gblocks, GBRS, gcc, GCTA, GDAL, gdc-client, GEM library, GEMMA, GeMoMa, GENECONV, geneid, GeneMark, GeneRax, Genespace, genomad, Genome STRiP, Genome Workbench, GenomeMapper, Genomescope, GenomeThreader, genometools, GenomicConsensus, genozip, gensim, GEOS, germline, gerp++, GET_PHYLOMARKERS, gfaviz, GffCompare, gffread, giggle, git, glactools, GlimmerHMM, GLIMPSE, GLnexus, Globus connect personal, GMAP/GSNAP, gmx_MMPBSA, GNU Compilers, GNU parallel, go-perl, GO2MSIG, GONE, GoShifter, gradle, graftM, grammy, GraPhlAn, graphtyper, graphviz, greenhill, GRiD, gridss, Grinder, grocsvs, GROMACS, GroopM, GSEA, gsort, GTDB-Tk, GTFtools, Gubbins, gunc, GUPPY, gvcftools, hail, hal, HapCompass, HAPCUT, HAPCUT2, hapflk, HaploMerger, Haplomerger2, haplostrips, HaploSync, HapSeq2, harpy, HarvestTools, haslr, hdf5, helixer, hget, hh-suite, HiC-Pro, hic_qc, HiCExplorer, HiFiAdapterFilt, hifiasm, hificnv, HISAT2, HMMER, Homer, HOTSPOT, HTSeq, htslib, https://github.com/CVUA-RRW/RRW-PrimerBLAST, hugin, humann, HUMAnN2, hybpiper, HyLiTE, Hyper-Gen, hyperopt, HyPhy, hyphy-analyses, iAssembler, IBDLD, IBDNe, IBDseq, idba, IDBA-UD, IDP-denovo, idr, idseq, IgBLAST, IGoR, IGV, IMa2, IMa2p, IMAGE, ImageJ, ImageMagick, Immcantation, impute2, impute5, IMSA-A, INDELseek, infernal, Infomap, inStrain, inStrain_lite, InStruct, Intel MKL, InteMAP, InterProScan, ipyrad, IQ-TREE, iRep, isoseq, JaBbA, jags, Jane, java, jbrowse, JCVI, jellyfish, jsalignon/cactus, juicer, julia, jupyter, jupyterlab, kaiju, kallisto, Kent Utilities, keras, khmer, kinfin, king, kma, KMC, KmerFinder, KmerGenie, kneaddata, kraken, KrakenTools, KronaTools, kSNP, kWIP, LACHESIS, lammps, LAPACK, lapels, LAST, lastz, lcMLkin, LDAK, LDhat, LeafCutter, leeHom, lep-anchor, Lep-MAP3, LEVIATHAN, lftp, Liftoff, lifton, Lighter, LinkedSV, LINKS, localcolabfold, LocARNA, LocusZoom, lofreq, longranger, Loupe, LS-GKM, LTR_retriever, LUCY, LUCY2, LUMPY, lyve-SET, m6anet, Macaulay2, MACE, MACS, MaCS simulator, MACS2, macs3, maffilter, MAFFT, mafTools, MAGeCK, MAGeCK-VISPR, Magic-BLAST, magick, MAGScoT, MAKER, manta, mapDamage, mapquik, MAQ, MARS, MASH, mashtree, Mashtree, MaSuRCA, MATLAB, Matlab_runtime, Mauve, MaxBin, MaxQuant, McClintock, mccortex, mcl, MCscan, MCScanX, medaka, medusa, megahit, MeGAMerge, MEGAN, MELT, MEME Suite, MERLIN, merqury, MetaBAT, MetaBinner, MetaboAnalystR, MetaCache, MetaCRAST, metaCRISPR, metamaps, MetAMOS, MetaPathways, MetaPhlAn, metapop, metaron, MetaVelvet, MetaVelvet-SL, metaWRAP, methpipe, mfeprimer, MGmapper, MicrobeAnnotator, microtrait, MIDAS, MiFish, Migrate-n, mikado, MinCED, minigraph, Minimac3, Minimac4, minimap2, miniprot, mira, miRDeep2, mirge3, miRquant, MISO, MITObim, MitoFinder, mitohelper, MitoHiFi, mity, MiXCR, MixMapper, MKTest, mlift, mlst, MMAP, MMSEQ, MMseqs2, MMTK, MobileElementFinder, modeltest, MODIStsp-2.0.5, module, moments, MoMI-G, mongo, mono, monocle3, mosdepth, mothur, MrBayes, mrsFAST, msdial, msld, MSMC, msprime, MSR-CA Genome Assembler, msstats, MSTMap, mugsy, MultiQC, multiz-tba, MUMandCo, MUMmer, mummer2circos, muscle, MUSIC, Mutation-Simulator, muTect, myte, MZmine, nag-compiler, namfinder, nanocompore, nanofilt, NanoPlot, Nanopolish, nanovar, ncbi_datasets, ncftp, ncl, NECAT, Nemo, Netbeans, NEURON, new_fugue, Nextflow, NextGenMap, NextPolish2, nf-core/rnaseq, ngmlr, NGS_data_processing, NGSadmix, ngsDist, ngsF, ngsLD, NGSNGS, NgsRelate, ngsTools, NGSUtils, NINJA, NLR-Annotator, NLR-Parser, NLRtracker, Novoalign, NovoalignCS, nQuire, NRSA, NuDup, numactl, nvidia-docker, nvtop, Oases, OBITools, Octave, OMA, Oneflux, OpenBLAS, openmpi, openslide, openssl, orthodb-clades, OrthoFinder, orthologr, Orthomcl, pacbio, PacBioTestData, PAGIT, pairtools, pal2nal, paleomix, PAML, panacus, panaroo, pandas, pandaseq, pandoc, pangene, PanPhlAn, Panseq, Parsnp, PASA, PASTEC, PAUP*, pauvre, pb-assembly, pbalign, pbbam, pbh5tools, PBJelly, pblat, pbmm2, PBSuite, pbsv, pbtk, PCAngsd, pcre, pcre2, PeakRanger, PeakSplitter, PEAR, PEER, PennCNV, peppro, PERL, PfamScan, pgap, PGDSpider, ph5tools, Phage_Finder, pharokka, phasedibd, PHAST, phenopath, Phobius, PHRAPL, PHYLIP, PhyloCSF, phyloFlash, phylophlan*, PhyloPhlAn2, phylophlan3, phyluce, PhyML, phyx, Picard, PICRUSt2, pigz, Pilon, Pindel, piPipes, PIQ, pixy, PlasFlow, platanus, Platypus, plink, plink2, Plotly, plotsr, plumed, Point Cloud Library, popbam, PopCOGenT, PopLDdecay, Porechop, poretools, portcullis, POUTINE, pplacer, PRANK, preseq, pretext-suite, primalscheme, primer3, PrimerBLAST, PrimerPooler, prinseq, prodigal, progenomics, progressiveCactus, PROJ, prokka, Proseq2, ProtExcluder, protolite, PSASS, psmc, psutil, pullseq, purge_dups, pyani, PyCogent, pycoQC, pyfaidx, pyGenomeTracks, PyMC, pymol-open-source, pyopencl, pypy, pyRAD, Pyro4, pyseer, PySnpTools, python, PyTorch, PyVCF, qapa, qcat, QIIME, QIIME2, QTCAT, Quake, Qualimap, QuantiSNP2, QUAST, quickmerge, QUMA, R, RACA, racon, rad_haplotyper, RADIS, RadSex, RagTag, rapt, RAPTR-SV, RATT, raven, RAxML, raxml-ng, Ray, rck, rclone, Rcorrector, RDP Classifier, REAGO, REAPR, Rebaler, Red, ReferenceSeeker, regenie, regtools, Relate, RelocaTE2, Repbase, RepeatMasker, RepeatModeler, RERconverge, ReSeq, resistify, RevBayes, RFdiffusion, RFMix, RGAAT, rgdal, RGI, Rgtsvm, Ribotaper, ripgrep, rJava, rMATS, RNAMMER, rnaQUAST, Rnightlights, Roary, Rockhopper, rohan, RoseTTAFold-All-Atom, RoseTTAFold2NA, rphast, Rqtl, Rqtl2, RSAT, RSEM, RSeQC, RStudio, rtfbs_db, ruby, run_dbcan, sabre, SaguaroGW, salmon, SALSA, Sambamba, samblaster, sample, SampleTracker, samplot, samtabix, Samtools, Satsuma, Satsuma2, SCALE, scanorama, scikit-learn, Scoary, scTE, scythe, seaborn, SEACR, SecretomeP, segul, self-assembling-manifold, selscan, seqfu, seqkit, SeqPrep, seqtk, SequelTools, sequenceTubeMap, Seurat, sf, sgrep, sgrep sorted_grep, SHAPEIT, SHAPEIT4, SHAPEIT5, shasta, Shiny, shore, SHOREmap, shortBRED, SHRiMP, sickle, sift4g, SignalP, SimPhy, simuPOP, sina, SINGER, singularity, sinto, sirius, sistr_cmd, skani, SKESA, skewer, SLiM, SLURM, smap, smash, smcpp, smoove, SMRT Analysis, SMRT LINK, snakemake, snap, SnapATAC, snapatac2, SNAPP, SnapTools, snATAC, SNeP, Sniffles, snippy, snp-sites, SnpEff, SNPgenie, SNPhylo, SNPsplit, SNVPhyl, SOAP2, SOAPdenovo, SOAPdenovo-Trans, SOAPdenovo2, SoloTE, SomaticSniper, sorted_grep, spaceranger, SPAdes, SPALN, SparCC, sparsehash, SPARTA, split-fasta, SQANTI3, sqlite, SqueezeMeta, SQuIRE, SRA Toolkit, srst2, ssantichaivekin/empress, stacks, Stacks 2, stairway-plot, stampy, STAR, staramr, Starcode, statmodels, stellarscope, STITCH, STPGA, StrainPhlAn, strawberry, Strelka, stringMLST, StringTie, STRUCTURE, Structure_threader, Struo2, stylegan2-ada-pytorch, subread, sumatra, supernova, suppa, SURPI, surpyvor, SURVIVOR, sutta, SV-plaudit, SVaBA, SVclone, SVDetect, svengine, SVseq2, svtools, svtyper, svviz2, SWAMP, sweed, SweepFinder, SweepFinder2, sweepsims, swiss2fasta.py, sword, syri, tabix, tagdust, Taiji, tama, Tandem Repeats Finder (TRF), tardis, TargetP, TASSEL 3, TASSEL 4, TASSEL 5, tax_myPHAGE, tbl2asn, tcoffee, TE-Aid, telescope, TensorFlow, TEToolkit, TEtranscripts, texlive, TFEA, tfTarget, thermonucleotideBLAST, ThermoRawFileParser, TMHMM, tmux, Tomahawk, TopHat, Torch, traitRate, Trans-Proteomic Pipeline (TPP), TransComb, TransDecoder, TRANSIT, transrate, TRAP, tree, treeCl, treemix, Trim Galore!, trimal, trimmomatic, Trinity, Trinotate, TrioCNV2, tRNAscan-SE, Trycycler, UBCG2, UCSC Kent utilities, ultra, ultraplex, UMAP, UMI-tools, umi-transfer, UMIScripts, Unicycler, UniRep, unitig-caller, unrar, usearch, VALET, valor, vamb, variabel, Variant Effect Predictor, VarScan, VCF-kit, vcf2diploid, vcf2phylip, vcfCooker, vcflib, vcftools, vdjtools, Velvet, vep, VESPA, vg, Vicuna, ViennaRNA, VIP, viral-ngs, virmap, VirSorter, VirusDetect, VirusFinder 2, vispr, VizBin, vmatch, vscode, vsearch, vt, WASP, webin-cli, wget, wgs-assembler (Celera), WGSassign, What_the_Phage, wiggletools, windowmasker, wine, Winnowmap, Wise2 (Genewise), wombat, Xander_assembler, xpclr, yaha, yahs, yap
Details for Alphapulldown (If the copy-pasted commands do not work, use this tool to remove unwanted characters)
Name: | Alphapulldown |
Version: | 2.0.0b5 |
OS: | Linux |
About: | Protein-protein interaction screens and high-throughput modelling of higher-order oligomers using AlphaFold-Multimer |
Added: | 3/24/2024 11:38:46 AM |
Updated: | 8/30/2024 3:00:00 PM |
Link: | https://github.com/KosinskiLab/AlphaPulldown |
Notes: | Use cbsugpu05, 06, 07 to run alphapulldown. cbsugpu07 has the faster GPU, but cbsugpu05 and 06 each have two GPU units. At the end of this page, there are instructions how to use both GPU units on the same server.
Step 1: generate msa with colabfold (much faster than the alphafold2 based alignment pipeline)
#This step normally takes a few minutes for dozens of proteins. The actual computing happens on the colabfold cloud server, it could be busy sometimes.
#Combine the bait and candidate protein sequences into a single fasta file, and put it under the current directory.
#Run the following command to generate msa files. In this command, my.fasta is the input fasta file name, msas is the output directory name.
cd /workdir/$USER
singularity run --bind /local/local_data/colabfold_cache:/cache --bind $PWD --pwd $PWD /programs/colabfold-1.5.5/colabfold.sif colabfold_batch my.fasta msas --msa-only
Step 2: run create_individual_features.py on cbsugpu05-07
#This step runs on cbsugpu05-7. It does not require GPU, but requires the database on the GPU. It should take <1hour for dozens of proteins.
#run this command from the parental directory of msas directory created from step1.
singularity exec --bind /local/local_data/alphafold-2.3.2:/db --bind $PWD --pwd $PWD /programs/alphapulldown-1.0.4/ap-2.0.0b5.sif
create_individual_features.py
--fasta_paths=my.fasta
--data_dir=/db
--output_dir=msas
--use_precomputed_msas=True
--max_template_date=2024-01-01
--use_mmseqs2=True
--skip_existing=False
Step 3: run run_multimer_jobs.pyon GPU (instructions of using two GPU units are at the end of the page)
#create two text file bait.txt,candidates.txt. The bait.txt has one line: bait protein name; the condidates.txt file has one protein name per line.
#run the command from the current directory, which contains: bait.txt,candidates.txt, msas directory, and an empty outputdir. it could take hours or days to finish depending on number of candidate proteins.
mkdir outputdir
#set environment variable to enable GPU to use system memory, so that large proteins can be processed
export TF_FORCE_UNIFIED_MEMORY=1
export XLA_PYTHON_CLIENT_MEM_FRACTION=4.0
singularity exec --nv --bind /local/local_data/alphafold-2.3.2:/db --bind $PWD --pwd $PWD /programs/alphapulldown-1.0.4/ap-2.0.0b5.sif
run_multimer_jobs.py --mode=pulldown
--num_cycle=3
--num_predictions_per_model=1
--output_path=./outputdir
--data_dir=/db
--protein_lists=bait.txt,candidates.txt
--monomer_objects_dir=msas
Step 4: generate a summary table
#this step can be run on any server. you just need the outputdir from the previous step
#run the command from the current directory, which has the outputdir under it
singularity exec --bind $PWD --pwd $PWD /programs/alphapulldown-1.0.4/alpha-analysis_jax_0.4.sif run_get_good_pae.sh --cutoff=10 --output_dir=./outputdir
Output is a csv file that you can open in Excel: predictions_with_good_interpae.csv in the ./outputdir. This page provides some guideline on scores.
Step 5: create a jupyter notebook
I found the jupyter visualiation tool not very useful. I prefer the plots generated by alphapickle in the next section. And use pymol for protein struction visualization. If you struggle with this step, you can skip to the next section "#QC plot can also be produced by alphapickle."
#run the command in the outputdir
cd outputdir
singularity exec --bind $PWD --pwd $PWD /programs/alphapulldown-1.0.4/ap-2.0.0b5.sif create_notebook.py --cutoff=5.0 --output_dir=./
#after this step, you should see a file output.ipynb in the directory.
#start jupyter in the outputdir
singularity exec --bind $PWD --pwd $PWD /programs/alphapulldown-1.0.4/ap-2.0.0b5.sif jupyter lab --ip=0.0.0.0 --port=8017 --no-browser
#you should see a URL http://cbsuxxxxx.biohpc.cornell.edu:8017/labtoken=xxxxxxxxxxxxxxxxxxxxx, copy paste the URL into a web browser, open the output.ipynb in the left panel, and execute every step in the book
#QC plot can also be produced by alphapickle.
Execute run_multimer_jobs.py in parallel on two GPU or more units on the same server:
1. Calculate the number of jobs for run_multimer, which is "number_of_baits x number_of candidates"
2. Divide the jobs into two batches, and create two shell scripts. The job_index should be between 1 and number of jobs:
shell script 1:
NVIDIA_VISIBLE_DEVICES=0 singularity exec --nv --nvccli --contain ... --job_index=1
NVIDIA_VISIBLE_DEVICES=0 singularity exec --nv --nvccli --contain ... --job_index=3
NVIDIA_VISIBLE_DEVICES=0 singularity exec --nv --nvccli --contain ... --job_index=5
...
shell script 2:
NVIDIA_VISIBLE_DEVICES=1 singularity exec --nv --nvccli --contain ... --job_index=2
NVIDIA_VISIBLE_DEVICES=1 singularity exec --nv --nvccli --contain ... --job_index=4
NVIDIA_VISIBLE_DEVICES=1 singularity exec --nv --nvccli --contain ... --job_index=6
...
3. Run both shell scripts simultaneously in "screen" session
sh script1.sh >& log1 &
sh script2.sh >& log2 &
4. monitor whether both GPUs are used:
nvidia-smi
|
Notify me if this software is upgraded or changed [You need to be logged in to use this feature]